plan9port

fork of plan9port with libvec, libstr and libsdb
Log | Files | Refs | README | LICENSE

map.1 (13546B)


      1 .TH MAP 1
      2 .SH NAME
      3 map, mapdemo, mapd \- draw maps on various projections
      4 .SH SYNOPSIS
      5 .B map
      6 .I projection
      7 [
      8 .I option ...
      9 ]
     10 .PP
     11 .B mapdemo
     12 .PP
     13 .SH DESCRIPTION
     14 .I Map
     15 prepares on the standard output a
     16 map suitable for display by any
     17 plotting filter described in
     18 .IR  plot (1).
     19 A menu of projections is produced in response to an unknown
     20 .IR projection .
     21 .I Mapdemo
     22 is a short course in mapping.
     23 .PP
     24 The default data for
     25 .I map
     26 are world shorelines.
     27 Option
     28 .B -f
     29 accesses more detailed data
     30 classified by feature.
     31 .TP
     32 .BR -f " [ \fIfeature\fR ... ]"
     33 Features are ranked 1 (default) to 4 from major to minor.
     34 Higher-numbered ranks include all lower-numbered ones.
     35 Features are
     36 .RS
     37 .TF country[1-3]
     38 .TP
     39 .BR shore [ 1 - 4 ] 
     40 seacoasts, lakes, and islands; option
     41 .B -f
     42 always shows
     43 .B shore1
     44 .TP
     45 .BR ilake [ 1 - 2 ] 
     46 intermittent lakes
     47 .TP
     48 .BR river [ 1 - 4 ] 
     49 rivers
     50 .TP
     51 .BR iriver [ 1 - 3 ] 
     52 intermittent rivers
     53 .TP
     54 .BR canal [ 1 - 3 ] 
     55 .BR 3 =irrigation
     56 canals
     57 .TP
     58 .BR glacier
     59 .TP
     60 .BR iceshelf [ 12 ] 
     61 .TP
     62 .BR reef
     63 .TP
     64 .BR saltpan [ 12 ] 
     65 .TP
     66 .BR country [ 1 - 3 ] 
     67 .BR 2 =disputed
     68 boundaries,
     69 .BR 3 =indefinite
     70 boundaries
     71 .TP
     72 .BR state
     73 states and provinces (US and Canada only)
     74 .PD
     75 .RE
     76 .PP
     77 In other options
     78 coordinates are in degrees, with north latitude
     79 and west longitude counted as positive.
     80 .TP 0
     81 .BI -l " S N E W"
     82 Set the southern and northern latitude
     83 and the eastern and western longitude limits.
     84 Missing arguments are filled out from the list
     85 \-90, 90, \-180, 180,
     86 or lesser limits suitable to the
     87 projection at hand.
     88 .TP
     89 .BI -k " S N E W
     90 Set the scale as if for a map with limits
     91 .B -l
     92 .I "S N E W"\f1.
     93 Do not consider any
     94 .B -l
     95 or
     96 .B -w
     97 option in setting scale.
     98 .TP
     99 .BI -o " lat lon rot"
    100 Orient the map in a nonstandard position.
    101 Imagine a transparent gridded sphere around the globe.
    102 Turn the overlay about the North Pole
    103 so that the Prime Meridian (longitude 0)
    104 of the overlay coincides with meridian
    105 .I lon
    106 on the globe.
    107 Then tilt the North Pole of the
    108 overlay along its Prime Meridian to latitude
    109 .I lat
    110 on the globe.
    111 Finally again turn the
    112 overlay about its `North Pole' so
    113 that its Prime Meridian coincides with the previous position
    114 of meridian
    115 .IR rot .
    116 Project the map in
    117 the standard form appropriate to the overlay, but presenting
    118 information from the underlying globe.
    119 Missing arguments are filled out from the list
    120 90, 0, 0.
    121 In the absence of
    122 .BR - o ,
    123 the orientation is 90, 0,
    124 .IR m ,
    125 where
    126 .I m
    127 is the middle of the longitude range.
    128 .TP
    129 .BI -w " S N E W"
    130 Window the map by the specified latitudes
    131 and longitudes in the tilted, rotated coordinate system.
    132 Missing arguments are filled out from the list \-90, 90, \-180, 180.
    133 (It is wise to give an encompassing
    134 .B -l
    135 option with
    136 .BR -w .
    137 Otherwise for small windows computing time
    138 varies inversely with area!)
    139 .TP
    140 .BI -d " n"
    141 For speed, plot only every
    142 .IR n th
    143 point.
    144 .TP
    145 .B  -r
    146 Reverse left and right
    147 (good for star charts and inside-out views).
    148 .ns
    149 .TP
    150 .B -v
    151 Verso.
    152 Switch to a normally suppressed sheet of the map, such as the
    153 back side of the earth in orthographic projection.
    154 .TP
    155 .B  -s1
    156 .br
    157 .ns
    158 .TP
    159 .B -s2
    160 Superpose; outputs for a
    161 .B -s1
    162 map (no closing) and a
    163 .B -s2
    164 map (no opening) may be concatenated.
    165 .TP
    166 .BI -g " dlat dlon res"
    167 Grid spacings are
    168 .IR dlat ,
    169 .IR dlon .
    170 Zero spacing means no grid.
    171 Missing
    172 .I dlat
    173 is taken to be zero.
    174 Missing
    175 .I dlon
    176 is taken the same as
    177 .IR dlat .
    178 Grid lines are drawn to a resolution of
    179 .I res
    180 (2° or less by default).
    181 In the absence of
    182 .BR - g ,
    183 grid spacing is 10°.
    184 .TP
    185 .BI -p " lat lon extent"
    186 Position the point
    187 .I lat, lon
    188 at the center of the plotting area.
    189 Scale the map so that the height (and width) of the
    190 nominal plotting area is
    191 .I extent
    192 times the size of one degree of latitude
    193 at the center.
    194 By default maps are scaled and positioned
    195 to fit within the plotting area.
    196 An
    197 .I extent
    198 overrides option
    199 .BR -k .
    200 .TP
    201 .BI -c " x y rot"
    202 After all other positioning and scaling operations
    203 have been performed, rotate the image
    204 .I rot
    205 degrees counterclockwise about the center 
    206 and move the center to position
    207 .IR x ,
    208 .IR y ,
    209 where the nominal plotting area is
    210 .RI \-1≤ x ≤1,
    211 .RI \-1≤ y ≤1.
    212 Missing arguments are taken to be 0.
    213 .BR -x
    214 Allow the map to extend outside the nominal plotting area.
    215 .TP
    216 .BR -m " [ \fIfile\fP ... ]"
    217 Use
    218 map data from named files.
    219 If no files are named, omit map data.
    220 Names that do not exist as pathnames are looked up in
    221 a standard directory, which contains, in addition to the
    222 data for
    223 .BR -f ,
    224 .RS
    225 .LP
    226 .TF counties
    227 .TP
    228 .B world
    229 World Data Bank I (default)
    230 .TP
    231 .B states
    232 US map from Census Bureau
    233 .TP
    234 .B counties
    235 US map from Census Bureau
    236 .PD
    237 .RE
    238 .IP
    239 The environment variables
    240 .B MAP 
    241 and
    242 .B MAPDIR 
    243 change the default
    244 map and default directory.
    245 .TP
    246 .BI -b " \fR[\fPlat0 lon0 lat1 lon1\fR... ]"
    247 Suppress the drawing of the normal boundary
    248 (defined by options
    249 .BR -l 
    250 and
    251 .BR -w ).
    252 Coordinates, if present, define the vertices of a
    253 polygon to which the map is clipped.
    254 If only two vertices are given, they are taken to be the
    255 diagonal of a rectangle.
    256 To draw the polygon, give its vertices as a
    257 .B -u
    258 track.
    259 .TP
    260 .BI -t " file ..."
    261 The
    262 .I files
    263 contain lists of points,
    264 given as latitude-longitude pairs in degrees.
    265 If the first file is named 
    266 .LR - ,
    267 the standard input is taken instead.
    268 The points of each list are plotted as connected `tracks'.
    269 .IP
    270 Points in a track file may be followed by label strings.
    271 A label breaks the track.
    272 A label may be prefixed by
    273 \fL"\fR,
    274 .LR : ,
    275 or 
    276 .L !
    277 and is terminated by a newline.
    278 An unprefixed string or a string prefixed with
    279 .L
    280 "
    281 is displayed at the designated point.
    282 The first word of a
    283 .L :
    284 or
    285 .L !
    286 string names a special symbol (see option
    287 .BR -y ).
    288 An optional numerical second word is a scale factor
    289 for the size of the symbol, 1 by default.
    290 A
    291 .L :
    292 symbol is aligned with its top to the north; a
    293 .L !
    294 symbol is aligned vertically on the page.
    295 .TP
    296 .BI -u " file ..."
    297 Same as
    298 .BR -t ,
    299 except the tracks are
    300 unbroken lines.
    301 .RB ( -t
    302 tracks appear as dot-dashed lines if the plotting filter supports them.)
    303 .TP
    304 .BI -y " file
    305 The
    306 .I file
    307 contains 
    308 .MR plot (7) -style
    309 data for
    310 .L :
    311 or
    312 .L !
    313 labels in
    314 .B -t
    315 or
    316 .B -u
    317 files.
    318 Each symbol is defined by a comment
    319 .BI : name
    320 then a sequence of
    321 .L m
    322 and
    323 .L v
    324 commands.
    325 Coordinates (0,0) fall on the plotting point.
    326 Default scaling is as if the nominal plotting range were
    327 .LR "ra -1 -1 1 1" ;
    328 .L ra
    329 commands in
    330 .I file
    331 change the scaling.
    332 .SS Projections
    333 Equatorial projections centered on the Prime Meridian
    334 (longitude 0).
    335 Parallels are straight horizontal lines.
    336 .PP
    337 .PD 0
    338 .TP 1.5i
    339 .B mercator
    340 equally spaced straight meridians, conformal,
    341 straight compass courses
    342 .TP
    343 .B sinusoidal
    344 equally spaced parallels,
    345 equal-area, same as
    346 .LR "bonne 0" .
    347 .TP
    348 .BI cylequalarea " lat0"
    349 equally spaced straight meridians, equal-area,
    350 true scale on
    351 .I lat0
    352 .TP
    353 .B cylindrical
    354 central projection on tangent cylinder
    355 .TP
    356 .BI rectangular " lat0"
    357 equally spaced parallels, equally spaced straight meridians, true scale on
    358 .I lat0
    359 .TP
    360 .BI gall " lat0"
    361 parallels spaced stereographically on prime meridian, equally spaced straight
    362 meridians, true scale on
    363 .I lat0
    364 .TP
    365 .B mollweide
    366 (homalographic) equal-area, hemisphere is a circle
    367 .br
    368 .B gilbert()
    369 sphere conformally mapped on hemisphere and viewed orthographically
    370 .TP
    371 .B gilbert
    372 globe mapped conformally on hemisphere, viewed orthographically
    373 .PD
    374 .PP
    375 Azimuthal projections centered on the North Pole.
    376 Parallels are concentric circles.
    377 Meridians are equally spaced radial lines.
    378 .PP
    379 .PD 0
    380 .TP 1.5i
    381 .B azequidistant
    382 equally spaced parallels,
    383 true distances from pole
    384 .TP
    385 .B azequalarea
    386 equal-area
    387 .TP
    388 .B gnomonic
    389 central projection on tangent plane,
    390 straight great circles
    391 .TP
    392 .BI perspective " dist"
    393 viewed along earth's axis
    394 .I dist
    395 earth radii from center of earth
    396 .TP
    397 .B orthographic
    398 viewed from infinity
    399 .TP
    400 .B stereographic
    401 conformal, projected from opposite pole
    402 .TP
    403 .B laue
    404 .IR radius " = tan(2\(mu" colatitude ),
    405 used in X-ray crystallography
    406 .TP
    407 .BI fisheye " n"
    408 stereographic seen from just inside medium with refractive index
    409 .I n
    410 .TP
    411 .BI newyorker " r"
    412 .IR radius " = log(" colatitude / r ):
    413 .I New Yorker
    414 map from viewing pedestal of radius
    415 .I r
    416 degrees
    417 .PD
    418 .PP
    419 Polar conic projections symmetric about the Prime Meridian.
    420 Parallels are segments of concentric circles.
    421 Except in the Bonne projection,
    422 meridians are equally spaced radial
    423 lines orthogonal to the parallels.
    424 .PP
    425 .PD 0
    426 .TP 1.5i
    427 .BI conic " lat0"
    428 central projection on cone tangent at
    429 .I lat0
    430 .TP
    431 .BI simpleconic " lat0 lat1"
    432 equally spaced parallels, true scale on
    433 .I lat0
    434 and
    435 .I lat1
    436 .TP
    437 .BI lambert " lat0 lat1"
    438 conformal, true scale on 
    439 .I lat0
    440 and 
    441 .I lat1
    442 .TP
    443 .BI albers " lat0 lat1"
    444 equal-area, true scale on
    445 .I lat0
    446 and 
    447 .I lat1
    448 .TP
    449 .BI bonne " lat0"
    450 equally spaced parallels, equal-area,
    451 parallel
    452 .I lat0
    453 developed from tangent cone
    454 .PD
    455 .PP
    456 Projections with bilateral symmetry about
    457 the Prime Meridian
    458 and the equator.
    459 .PP
    460 .PD 0
    461 .TP 1.5i
    462 .B polyconic
    463 parallels developed from tangent cones,
    464 equally spaced along Prime Meridian
    465 .TP
    466 .B aitoff
    467 equal-area projection of globe onto 2-to-1
    468 ellipse, based on 
    469 .I azequalarea
    470 .TP
    471 .B lagrange
    472 conformal, maps whole sphere into a circle
    473 .TP
    474 .BI bicentric " lon0"
    475 points plotted at true azimuth from two
    476 centers on the equator at longitudes
    477 .IR ±lon0 ,
    478 great circles are straight lines
    479 (a stretched
    480 .IR gnomonic
    481 )
    482 .TP
    483 .BI elliptic " lon0"
    484 points plotted at true distance from
    485 two centers on the equator at longitudes
    486 .I ±lon0
    487 .TP
    488 .B globular
    489 hemisphere is circle,
    490 circular arc meridians equally spaced on equator,
    491 circular arc parallels equally spaced on 0- and 90-degree meridians
    492 .TP
    493 .B vandergrinten
    494 sphere is circle,
    495 meridians as in
    496 .IR globular ,
    497 circular arc parallels resemble 
    498 .I mercator
    499 .PD
    500 .PP
    501 Doubly periodic conformal projections.
    502 .PP
    503 .TP 1.5i
    504 .B guyou
    505 W and E hemispheres are square
    506 .PD 0
    507 .TP
    508 .B square
    509 world is square with Poles
    510 at diagonally opposite corners
    511 .TP
    512 .B tetra
    513 map on tetrahedron with edge
    514 tangent to Prime Meridian at S Pole,
    515 unfolded into equilateral triangle
    516 .TP
    517 .B hex
    518 world is hexagon centered
    519 on N Pole, N and S hemispheres are equilateral
    520 triangles
    521 .PD
    522 .PP
    523 Miscellaneous projections.
    524 .PP
    525 .PD 0
    526 .TP 1.5i
    527 .BI harrison " dist angle"
    528 oblique perspective from above the North Pole,
    529 .I dist
    530 earth radii from center of earth, looking
    531 along the Date Line
    532 .I angle
    533 degrees off vertical
    534 .TP
    535 .BI trapezoidal " lat0 lat1"
    536 equally spaced parallels,
    537 straight meridians equally spaced along parallels,
    538 true scale at
    539 .I lat0
    540 and
    541 .I lat1
    542 on Prime Meridian
    543 .PD
    544 .br
    545 .B lune(lat,angle)
    546 conformal, polar cap above latitude
    547 .I lat
    548 maps to convex lune with given
    549 .I angle
    550 at 90\(deE and 90\(deW
    551 .PP
    552 Retroazimuthal projections.
    553 At every point the angle between vertical and a straight line to
    554 `Mecca', latitude
    555 .I lat0
    556 on the prime meridian,
    557 is the true bearing of Mecca.
    558 .PP
    559 .PD 0
    560 .TP 1.5i
    561 .BI mecca " lat0"
    562 equally spaced vertical meridians
    563 .TP
    564 .BI homing " lat0"
    565 distances to Mecca are true
    566 .PD
    567 .PP
    568 Maps based on the spheroid.
    569 Of geodetic quality, these projections do not make sense
    570 for tilted orientations.
    571 For descriptions, see corresponding maps above.
    572 .PP
    573 .PD 0
    574 .TP 1.5i
    575 .B sp_mercator
    576 .TP
    577 .BI sp_albers " lat0 lat1"
    578 .SH EXAMPLES
    579 .TP
    580 .L
    581 map perspective 1.025 -o 40.75 74
    582 A view looking down on New York from 100 miles
    583 (0.025 of the 4000-mile earth radius) up.
    584 The job can be done faster by limiting the map so as not to `plot'
    585 the invisible part of the world:
    586 .LR "map perspective 1.025 -o 40.75 74 -l 20 60 30 100".
    587 A circular border can be forced by adding option
    588 .LR "-w 77.33" .
    589 (Latitude 77.33° falls just inside a polar cap of
    590 opening angle arccos(1/1.025) = 12.6804°.)
    591 .TP
    592 .L
    593 map mercator -o 49.25 -106 180
    594 An `equatorial' map of the earth
    595 centered on New York.
    596 The pole of the map is placed 90\(de away (40.75+49.25=90)
    597 on the
    598 other side of the earth.
    599 A 180° twist around the pole of the map arranges that the
    600 `Prime Meridian' of the map runs from the pole of the
    601 map over the North Pole to New York
    602 instead of down the back side of the earth.
    603 The same effect can be had from
    604 .L
    605 map mercator -o 130.75 74
    606 .TP
    607 .L
    608 map albers 28 45 -l 20 50 60 130 -m states
    609 A customary curved-latitude map of the United States.
    610 .TP
    611 .L
    612 map harrison 2 30 -l -90 90 120 240 -o 90 0 0
    613 A fan view covering 60° on either
    614 side of the Date Line, as seen from one earth radius
    615 above the North Pole gazing at the
    616 earth's limb, which is 30° off vertical.
    617 The
    618 .B -o
    619 option overrides the default
    620 .BR "-o 90 0 180" , 
    621 which would rotate
    622 the scene to behind the observer.
    623 .SH FILES
    624 .TF /lib/map/[1-4]??
    625 .TP
    626 .B /lib/map/[1-4]??
    627 World Data Bank II, for
    628 .B -f
    629 .TP
    630 .B /lib/map/*
    631 maps for
    632 .B -m
    633 .TP
    634 .B /lib/map/*.x
    635 map indexes
    636 .TP
    637 .B mapd
    638 Map driver program
    639 .SH SOURCE
    640 .B \*9/src/cmd/map
    641 .SH "SEE ALSO"
    642 .IR map (7), 
    643 .MR plot (1)
    644 .SH DIAGNOSTICS
    645 `Map seems to be empty'\(ema coarse survey found
    646 zero extent within the 
    647 .B -l
    648 and
    649 .BR -w 
    650 bounds; for maps of limited extent
    651 the grid resolution,
    652 .IR res ,
    653 or the limits may have to be refined.
    654 .SH BUGS
    655 Windows (option
    656 .BR -w )
    657 cannot cross the Date Line.
    658 No borders appear along edges arising from
    659 visibility limits.
    660 Segments that cross a border are dropped, not clipped.
    661 Excessively large scale or
    662 .B -d
    663 setting may cause long line segments to be dropped.
    664 .I Map
    665 tries to draw grid lines dotted and
    666 .B -t
    667 tracks dot-dashed.
    668 As very few plotting filters properly support
    669 curved textured lines, these lines are likely to
    670 appear solid.
    671 The west-longitude-positive convention
    672 betrays Yankee chauvinism.
    673 .I Gilbert
    674 should be a map from sphere to sphere, independent of
    675 the mapping from sphere to plane.