blocksort.c (32172B)
1 2 /*-------------------------------------------------------------*/ 3 /*--- Block sorting machinery ---*/ 4 /*--- blocksort.c ---*/ 5 /*-------------------------------------------------------------*/ 6 7 /*-- 8 This file is a part of bzip2 and/or libbzip2, a program and 9 library for lossless, block-sorting data compression. 10 11 Copyright (C) 1996-2000 Julian R Seward. All rights reserved. 12 13 Redistribution and use in source and binary forms, with or without 14 modification, are permitted provided that the following conditions 15 are met: 16 17 1. Redistributions of source code must retain the above copyright 18 notice, this list of conditions and the following disclaimer. 19 20 2. The origin of this software must not be misrepresented; you must 21 not claim that you wrote the original software. If you use this 22 software in a product, an acknowledgment in the product 23 documentation would be appreciated but is not required. 24 25 3. Altered source versions must be plainly marked as such, and must 26 not be misrepresented as being the original software. 27 28 4. The name of the author may not be used to endorse or promote 29 products derived from this software without specific prior written 30 permission. 31 32 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 33 OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 34 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 36 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 38 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 39 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 40 WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 41 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 42 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 43 44 Julian Seward, Cambridge, UK. 45 jseward@acm.org 46 bzip2/libbzip2 version 1.0 of 21 March 2000 47 48 This program is based on (at least) the work of: 49 Mike Burrows 50 David Wheeler 51 Peter Fenwick 52 Alistair Moffat 53 Radford Neal 54 Ian H. Witten 55 Robert Sedgewick 56 Jon L. Bentley 57 58 For more information on these sources, see the manual. 59 60 To get some idea how the block sorting algorithms in this file 61 work, read my paper 62 On the Performance of BWT Sorting Algorithms 63 in Proceedings of the IEEE Data Compression Conference 2000, 64 Snowbird, Utah, USA, 27-30 March 2000. The main sort in this 65 file implements the algorithm called cache in the paper. 66 --*/ 67 68 #include "os.h" 69 #include "bzlib.h" 70 #include "bzlib_private.h" 71 72 /*---------------------------------------------*/ 73 /*--- Fallback O(N log(N)^2) sorting ---*/ 74 /*--- algorithm, for repetitive blocks ---*/ 75 /*---------------------------------------------*/ 76 77 /*---------------------------------------------*/ 78 static 79 __inline__ 80 void fallbackSimpleSort ( UInt32* fmap, 81 UInt32* eclass, 82 Int32 lo, 83 Int32 hi ) 84 { 85 Int32 i, j, tmp; 86 UInt32 ec_tmp; 87 88 if (lo == hi) return; 89 90 if (hi - lo > 3) { 91 for ( i = hi-4; i >= lo; i-- ) { 92 tmp = fmap[i]; 93 ec_tmp = eclass[tmp]; 94 for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 ) 95 fmap[j-4] = fmap[j]; 96 fmap[j-4] = tmp; 97 } 98 } 99 100 for ( i = hi-1; i >= lo; i-- ) { 101 tmp = fmap[i]; 102 ec_tmp = eclass[tmp]; 103 for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ ) 104 fmap[j-1] = fmap[j]; 105 fmap[j-1] = tmp; 106 } 107 } 108 109 110 /*---------------------------------------------*/ 111 #define fswap(zz1, zz2) \ 112 { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } 113 114 #define fvswap(zzp1, zzp2, zzn) \ 115 { \ 116 Int32 yyp1 = (zzp1); \ 117 Int32 yyp2 = (zzp2); \ 118 Int32 yyn = (zzn); \ 119 while (yyn > 0) { \ 120 fswap(fmap[yyp1], fmap[yyp2]); \ 121 yyp1++; yyp2++; yyn--; \ 122 } \ 123 } 124 125 126 #define fmin(a,b) ((a) < (b)) ? (a) : (b) 127 128 #define fpush(lz,hz) { stackLo[sp] = lz; \ 129 stackHi[sp] = hz; \ 130 sp++; } 131 132 #define fpop(lz,hz) { sp--; \ 133 lz = stackLo[sp]; \ 134 hz = stackHi[sp]; } 135 136 #define FALLBACK_QSORT_SMALL_THRESH 10 137 #define FALLBACK_QSORT_STACK_SIZE 100 138 139 140 static 141 void fallbackQSort3 ( UInt32* fmap, 142 UInt32* eclass, 143 Int32 loSt, 144 Int32 hiSt ) 145 { 146 Int32 unLo, unHi, ltLo, gtHi, n, m; 147 Int32 sp, lo, hi; 148 UInt32 med, r, r3; 149 Int32 stackLo[FALLBACK_QSORT_STACK_SIZE]; 150 Int32 stackHi[FALLBACK_QSORT_STACK_SIZE]; 151 152 r = 0; 153 154 sp = 0; 155 fpush ( loSt, hiSt ); 156 157 while (sp > 0) { 158 159 AssertH ( sp < FALLBACK_QSORT_STACK_SIZE, 1004 ); 160 161 fpop ( lo, hi ); 162 if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) { 163 fallbackSimpleSort ( fmap, eclass, lo, hi ); 164 continue; 165 } 166 167 /* Random partitioning. Median of 3 sometimes fails to 168 avoid bad cases. Median of 9 seems to help but 169 looks rather expensive. This too seems to work but 170 is cheaper. Guidance for the magic constants 171 7621 and 32768 is taken from Sedgewick's algorithms 172 book, chapter 35. 173 */ 174 r = ((r * 7621) + 1) % 32768; 175 r3 = r % 3; 176 if (r3 == 0) med = eclass[fmap[lo]]; else 177 if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else 178 med = eclass[fmap[hi]]; 179 180 unLo = ltLo = lo; 181 unHi = gtHi = hi; 182 183 while (1) { 184 while (1) { 185 if (unLo > unHi) break; 186 n = (Int32)eclass[fmap[unLo]] - (Int32)med; 187 if (n == 0) { 188 fswap(fmap[unLo], fmap[ltLo]); 189 ltLo++; unLo++; 190 continue; 191 }; 192 if (n > 0) break; 193 unLo++; 194 } 195 while (1) { 196 if (unLo > unHi) break; 197 n = (Int32)eclass[fmap[unHi]] - (Int32)med; 198 if (n == 0) { 199 fswap(fmap[unHi], fmap[gtHi]); 200 gtHi--; unHi--; 201 continue; 202 }; 203 if (n < 0) break; 204 unHi--; 205 } 206 if (unLo > unHi) break; 207 fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--; 208 } 209 210 AssertD ( unHi == unLo-1, "fallbackQSort3(2)" ); 211 212 if (gtHi < ltLo) continue; 213 214 n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n); 215 m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m); 216 217 n = lo + unLo - ltLo - 1; 218 m = hi - (gtHi - unHi) + 1; 219 220 if (n - lo > hi - m) { 221 fpush ( lo, n ); 222 fpush ( m, hi ); 223 } else { 224 fpush ( m, hi ); 225 fpush ( lo, n ); 226 } 227 } 228 } 229 230 #undef fmin 231 #undef fpush 232 #undef fpop 233 #undef fswap 234 #undef fvswap 235 #undef FALLBACK_QSORT_SMALL_THRESH 236 #undef FALLBACK_QSORT_STACK_SIZE 237 238 239 /*---------------------------------------------*/ 240 /* Pre: 241 nblock > 0 242 eclass exists for [0 .. nblock-1] 243 ((UChar*)eclass) [0 .. nblock-1] holds block 244 ptr exists for [0 .. nblock-1] 245 246 Post: 247 ((UChar*)eclass) [0 .. nblock-1] holds block 248 All other areas of eclass destroyed 249 fmap [0 .. nblock-1] holds sorted order 250 bhtab [ 0 .. 2+(nblock/32) ] destroyed 251 */ 252 253 #define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31)) 254 #define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31)) 255 #define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31))) 256 #define WORD_BH(zz) bhtab[(zz) >> 5] 257 #define UNALIGNED_BH(zz) ((zz) & 0x01f) 258 259 static 260 void fallbackSort ( UInt32* fmap, 261 UInt32* eclass, 262 UInt32* bhtab, 263 Int32 nblock, 264 Int32 verb ) 265 { 266 Int32 ftab[257]; 267 Int32 ftabCopy[256]; 268 Int32 H, i, j, k, l, r, cc, cc1; 269 Int32 nNotDone; 270 Int32 nBhtab; 271 UChar* eclass8 = (UChar*)eclass; 272 273 /*-- 274 Initial 1-char radix sort to generate 275 initial fmap and initial BH bits. 276 --*/ 277 if (verb >= 4) 278 VPrintf0 ( " bucket sorting ...\n" ); 279 for (i = 0; i < 257; i++) ftab[i] = 0; 280 for (i = 0; i < nblock; i++) ftab[eclass8[i]]++; 281 for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i]; 282 for (i = 1; i < 257; i++) ftab[i] += ftab[i-1]; 283 284 for (i = 0; i < nblock; i++) { 285 j = eclass8[i]; 286 k = ftab[j] - 1; 287 ftab[j] = k; 288 fmap[k] = i; 289 } 290 291 nBhtab = 2 + (nblock / 32); 292 for (i = 0; i < nBhtab; i++) bhtab[i] = 0; 293 for (i = 0; i < 256; i++) SET_BH(ftab[i]); 294 295 /*-- 296 Inductively refine the buckets. Kind-of an 297 "exponential radix sort" (!), inspired by the 298 Manber-Myers suffix array construction algorithm. 299 --*/ 300 301 /*-- set sentinel bits for block-end detection --*/ 302 for (i = 0; i < 32; i++) { 303 SET_BH(nblock + 2*i); 304 CLEAR_BH(nblock + 2*i + 1); 305 } 306 307 /*-- the log(N) loop --*/ 308 H = 1; 309 while (1) { 310 311 if (verb >= 4) 312 VPrintf1 ( " depth %6d has ", H ); 313 314 j = 0; 315 for (i = 0; i < nblock; i++) { 316 if (ISSET_BH(i)) j = i; 317 k = fmap[i] - H; if (k < 0) k += nblock; 318 eclass[k] = j; 319 } 320 321 nNotDone = 0; 322 r = -1; 323 while (1) { 324 325 /*-- find the next non-singleton bucket --*/ 326 k = r + 1; 327 while (ISSET_BH(k) && UNALIGNED_BH(k)) k++; 328 if (ISSET_BH(k)) { 329 while (WORD_BH(k) == 0xffffffff) k += 32; 330 while (ISSET_BH(k)) k++; 331 } 332 l = k - 1; 333 if (l >= nblock) break; 334 while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++; 335 if (!ISSET_BH(k)) { 336 while (WORD_BH(k) == 0x00000000) k += 32; 337 while (!ISSET_BH(k)) k++; 338 } 339 r = k - 1; 340 if (r >= nblock) break; 341 342 /*-- now [l, r] bracket current bucket --*/ 343 if (r > l) { 344 nNotDone += (r - l + 1); 345 fallbackQSort3 ( fmap, eclass, l, r ); 346 347 /*-- scan bucket and generate header bits-- */ 348 cc = -1; 349 for (i = l; i <= r; i++) { 350 cc1 = eclass[fmap[i]]; 351 if (cc != cc1) { SET_BH(i); cc = cc1; }; 352 } 353 } 354 } 355 356 if (verb >= 4) 357 VPrintf1 ( "%6d unresolved strings\n", nNotDone ); 358 359 H *= 2; 360 if (H > nblock || nNotDone == 0) break; 361 } 362 363 /*-- 364 Reconstruct the original block in 365 eclass8 [0 .. nblock-1], since the 366 previous phase destroyed it. 367 --*/ 368 if (verb >= 4) 369 VPrintf0 ( " reconstructing block ...\n" ); 370 j = 0; 371 for (i = 0; i < nblock; i++) { 372 while (ftabCopy[j] == 0) j++; 373 ftabCopy[j]--; 374 eclass8[fmap[i]] = (UChar)j; 375 } 376 AssertH ( j < 256, 1005 ); 377 } 378 379 #undef SET_BH 380 #undef CLEAR_BH 381 #undef ISSET_BH 382 #undef WORD_BH 383 #undef UNALIGNED_BH 384 385 386 /*---------------------------------------------*/ 387 /*--- The main, O(N^2 log(N)) sorting ---*/ 388 /*--- algorithm. Faster for "normal" ---*/ 389 /*--- non-repetitive blocks. ---*/ 390 /*---------------------------------------------*/ 391 392 /*---------------------------------------------*/ 393 static 394 __inline__ 395 Bool mainGtU ( UInt32 i1, 396 UInt32 i2, 397 UChar* block, 398 UInt16* quadrant, 399 UInt32 nblock, 400 Int32* budget ) 401 { 402 Int32 k; 403 UChar c1, c2; 404 UInt16 s1, s2; 405 406 AssertD ( i1 != i2, "mainGtU" ); 407 /* 1 */ 408 c1 = block[i1]; c2 = block[i2]; 409 if (c1 != c2) return (c1 > c2); 410 i1++; i2++; 411 /* 2 */ 412 c1 = block[i1]; c2 = block[i2]; 413 if (c1 != c2) return (c1 > c2); 414 i1++; i2++; 415 /* 3 */ 416 c1 = block[i1]; c2 = block[i2]; 417 if (c1 != c2) return (c1 > c2); 418 i1++; i2++; 419 /* 4 */ 420 c1 = block[i1]; c2 = block[i2]; 421 if (c1 != c2) return (c1 > c2); 422 i1++; i2++; 423 /* 5 */ 424 c1 = block[i1]; c2 = block[i2]; 425 if (c1 != c2) return (c1 > c2); 426 i1++; i2++; 427 /* 6 */ 428 c1 = block[i1]; c2 = block[i2]; 429 if (c1 != c2) return (c1 > c2); 430 i1++; i2++; 431 /* 7 */ 432 c1 = block[i1]; c2 = block[i2]; 433 if (c1 != c2) return (c1 > c2); 434 i1++; i2++; 435 /* 8 */ 436 c1 = block[i1]; c2 = block[i2]; 437 if (c1 != c2) return (c1 > c2); 438 i1++; i2++; 439 /* 9 */ 440 c1 = block[i1]; c2 = block[i2]; 441 if (c1 != c2) return (c1 > c2); 442 i1++; i2++; 443 /* 10 */ 444 c1 = block[i1]; c2 = block[i2]; 445 if (c1 != c2) return (c1 > c2); 446 i1++; i2++; 447 /* 11 */ 448 c1 = block[i1]; c2 = block[i2]; 449 if (c1 != c2) return (c1 > c2); 450 i1++; i2++; 451 /* 12 */ 452 c1 = block[i1]; c2 = block[i2]; 453 if (c1 != c2) return (c1 > c2); 454 i1++; i2++; 455 456 k = nblock + 8; 457 458 do { 459 /* 1 */ 460 c1 = block[i1]; c2 = block[i2]; 461 if (c1 != c2) return (c1 > c2); 462 s1 = quadrant[i1]; s2 = quadrant[i2]; 463 if (s1 != s2) return (s1 > s2); 464 i1++; i2++; 465 /* 2 */ 466 c1 = block[i1]; c2 = block[i2]; 467 if (c1 != c2) return (c1 > c2); 468 s1 = quadrant[i1]; s2 = quadrant[i2]; 469 if (s1 != s2) return (s1 > s2); 470 i1++; i2++; 471 /* 3 */ 472 c1 = block[i1]; c2 = block[i2]; 473 if (c1 != c2) return (c1 > c2); 474 s1 = quadrant[i1]; s2 = quadrant[i2]; 475 if (s1 != s2) return (s1 > s2); 476 i1++; i2++; 477 /* 4 */ 478 c1 = block[i1]; c2 = block[i2]; 479 if (c1 != c2) return (c1 > c2); 480 s1 = quadrant[i1]; s2 = quadrant[i2]; 481 if (s1 != s2) return (s1 > s2); 482 i1++; i2++; 483 /* 5 */ 484 c1 = block[i1]; c2 = block[i2]; 485 if (c1 != c2) return (c1 > c2); 486 s1 = quadrant[i1]; s2 = quadrant[i2]; 487 if (s1 != s2) return (s1 > s2); 488 i1++; i2++; 489 /* 6 */ 490 c1 = block[i1]; c2 = block[i2]; 491 if (c1 != c2) return (c1 > c2); 492 s1 = quadrant[i1]; s2 = quadrant[i2]; 493 if (s1 != s2) return (s1 > s2); 494 i1++; i2++; 495 /* 7 */ 496 c1 = block[i1]; c2 = block[i2]; 497 if (c1 != c2) return (c1 > c2); 498 s1 = quadrant[i1]; s2 = quadrant[i2]; 499 if (s1 != s2) return (s1 > s2); 500 i1++; i2++; 501 /* 8 */ 502 c1 = block[i1]; c2 = block[i2]; 503 if (c1 != c2) return (c1 > c2); 504 s1 = quadrant[i1]; s2 = quadrant[i2]; 505 if (s1 != s2) return (s1 > s2); 506 i1++; i2++; 507 508 if (i1 >= nblock) i1 -= nblock; 509 if (i2 >= nblock) i2 -= nblock; 510 511 k -= 8; 512 (*budget)--; 513 } 514 while (k >= 0); 515 516 return False; 517 } 518 519 520 /*---------------------------------------------*/ 521 /*-- 522 Knuth's increments seem to work better 523 than Incerpi-Sedgewick here. Possibly 524 because the number of elems to sort is 525 usually small, typically <= 20. 526 --*/ 527 static 528 Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280, 529 9841, 29524, 88573, 265720, 530 797161, 2391484 }; 531 532 static 533 void mainSimpleSort ( UInt32* ptr, 534 UChar* block, 535 UInt16* quadrant, 536 Int32 nblock, 537 Int32 lo, 538 Int32 hi, 539 Int32 d, 540 Int32* budget ) 541 { 542 Int32 i, j, h, bigN, hp; 543 UInt32 v; 544 545 bigN = hi - lo + 1; 546 if (bigN < 2) return; 547 548 hp = 0; 549 while (incs[hp] < bigN) hp++; 550 hp--; 551 552 for (; hp >= 0; hp--) { 553 h = incs[hp]; 554 555 i = lo + h; 556 while (True) { 557 558 /*-- copy 1 --*/ 559 if (i > hi) break; 560 v = ptr[i]; 561 j = i; 562 while ( mainGtU ( 563 ptr[j-h]+d, v+d, block, quadrant, nblock, budget 564 ) ) { 565 ptr[j] = ptr[j-h]; 566 j = j - h; 567 if (j <= (lo + h - 1)) break; 568 } 569 ptr[j] = v; 570 i++; 571 572 /*-- copy 2 --*/ 573 if (i > hi) break; 574 v = ptr[i]; 575 j = i; 576 while ( mainGtU ( 577 ptr[j-h]+d, v+d, block, quadrant, nblock, budget 578 ) ) { 579 ptr[j] = ptr[j-h]; 580 j = j - h; 581 if (j <= (lo + h - 1)) break; 582 } 583 ptr[j] = v; 584 i++; 585 586 /*-- copy 3 --*/ 587 if (i > hi) break; 588 v = ptr[i]; 589 j = i; 590 while ( mainGtU ( 591 ptr[j-h]+d, v+d, block, quadrant, nblock, budget 592 ) ) { 593 ptr[j] = ptr[j-h]; 594 j = j - h; 595 if (j <= (lo + h - 1)) break; 596 } 597 ptr[j] = v; 598 i++; 599 600 if (*budget < 0) return; 601 } 602 } 603 } 604 605 606 /*---------------------------------------------*/ 607 /*-- 608 The following is an implementation of 609 an elegant 3-way quicksort for strings, 610 described in a paper "Fast Algorithms for 611 Sorting and Searching Strings", by Robert 612 Sedgewick and Jon L. Bentley. 613 --*/ 614 615 #define mswap(zz1, zz2) \ 616 { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } 617 618 #define mvswap(zzp1, zzp2, zzn) \ 619 { \ 620 Int32 yyp1 = (zzp1); \ 621 Int32 yyp2 = (zzp2); \ 622 Int32 yyn = (zzn); \ 623 while (yyn > 0) { \ 624 mswap(ptr[yyp1], ptr[yyp2]); \ 625 yyp1++; yyp2++; yyn--; \ 626 } \ 627 } 628 629 static 630 __inline__ 631 UChar mmed3 ( UChar a, UChar b, UChar c ) 632 { 633 UChar t; 634 if (a > b) { t = a; a = b; b = t; }; 635 if (b > c) { 636 b = c; 637 if (a > b) b = a; 638 } 639 return b; 640 } 641 642 #define mmin(a,b) ((a) < (b)) ? (a) : (b) 643 644 #define mpush(lz,hz,dz) { stackLo[sp] = lz; \ 645 stackHi[sp] = hz; \ 646 stackD [sp] = dz; \ 647 sp++; } 648 649 #define mpop(lz,hz,dz) { sp--; \ 650 lz = stackLo[sp]; \ 651 hz = stackHi[sp]; \ 652 dz = stackD [sp]; } 653 654 655 #define mnextsize(az) (nextHi[az]-nextLo[az]) 656 657 #define mnextswap(az,bz) \ 658 { Int32 tz; \ 659 tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \ 660 tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \ 661 tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; } 662 663 664 #define MAIN_QSORT_SMALL_THRESH 20 665 #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT) 666 #define MAIN_QSORT_STACK_SIZE 100 667 668 static 669 void mainQSort3 ( UInt32* ptr, 670 UChar* block, 671 UInt16* quadrant, 672 Int32 nblock, 673 Int32 loSt, 674 Int32 hiSt, 675 Int32 dSt, 676 Int32* budget ) 677 { 678 Int32 unLo, unHi, ltLo, gtHi, n, m, med; 679 Int32 sp, lo, hi, d; 680 681 Int32 stackLo[MAIN_QSORT_STACK_SIZE]; 682 Int32 stackHi[MAIN_QSORT_STACK_SIZE]; 683 Int32 stackD [MAIN_QSORT_STACK_SIZE]; 684 685 Int32 nextLo[3]; 686 Int32 nextHi[3]; 687 Int32 nextD [3]; 688 689 sp = 0; 690 mpush ( loSt, hiSt, dSt ); 691 692 while (sp > 0) { 693 694 AssertH ( sp < MAIN_QSORT_STACK_SIZE, 1001 ); 695 696 mpop ( lo, hi, d ); 697 if (hi - lo < MAIN_QSORT_SMALL_THRESH || 698 d > MAIN_QSORT_DEPTH_THRESH) { 699 mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget ); 700 if (*budget < 0) return; 701 continue; 702 } 703 704 med = (Int32) 705 mmed3 ( block[ptr[ lo ]+d], 706 block[ptr[ hi ]+d], 707 block[ptr[ (lo+hi)>>1 ]+d] ); 708 709 unLo = ltLo = lo; 710 unHi = gtHi = hi; 711 712 while (True) { 713 while (True) { 714 if (unLo > unHi) break; 715 n = ((Int32)block[ptr[unLo]+d]) - med; 716 if (n == 0) { 717 mswap(ptr[unLo], ptr[ltLo]); 718 ltLo++; unLo++; continue; 719 }; 720 if (n > 0) break; 721 unLo++; 722 } 723 while (True) { 724 if (unLo > unHi) break; 725 n = ((Int32)block[ptr[unHi]+d]) - med; 726 if (n == 0) { 727 mswap(ptr[unHi], ptr[gtHi]); 728 gtHi--; unHi--; continue; 729 }; 730 if (n < 0) break; 731 unHi--; 732 } 733 if (unLo > unHi) break; 734 mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--; 735 } 736 737 AssertD ( unHi == unLo-1, "mainQSort3(2)" ); 738 739 if (gtHi < ltLo) { 740 mpush(lo, hi, d+1 ); 741 continue; 742 } 743 744 n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n); 745 m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m); 746 747 n = lo + unLo - ltLo - 1; 748 m = hi - (gtHi - unHi) + 1; 749 750 nextLo[0] = lo; nextHi[0] = n; nextD[0] = d; 751 nextLo[1] = m; nextHi[1] = hi; nextD[1] = d; 752 nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1; 753 754 if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); 755 if (mnextsize(1) < mnextsize(2)) mnextswap(1,2); 756 if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); 757 758 AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" ); 759 AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" ); 760 761 mpush (nextLo[0], nextHi[0], nextD[0]); 762 mpush (nextLo[1], nextHi[1], nextD[1]); 763 mpush (nextLo[2], nextHi[2], nextD[2]); 764 } 765 } 766 767 #undef mswap 768 #undef mvswap 769 #undef mpush 770 #undef mpop 771 #undef mmin 772 #undef mnextsize 773 #undef mnextswap 774 #undef MAIN_QSORT_SMALL_THRESH 775 #undef MAIN_QSORT_DEPTH_THRESH 776 #undef MAIN_QSORT_STACK_SIZE 777 778 779 /*---------------------------------------------*/ 780 /* Pre: 781 nblock > N_OVERSHOOT 782 block32 exists for [0 .. nblock-1 +N_OVERSHOOT] 783 ((UChar*)block32) [0 .. nblock-1] holds block 784 ptr exists for [0 .. nblock-1] 785 786 Post: 787 ((UChar*)block32) [0 .. nblock-1] holds block 788 All other areas of block32 destroyed 789 ftab [0 .. 65536 ] destroyed 790 ptr [0 .. nblock-1] holds sorted order 791 if (*budget < 0), sorting was abandoned 792 */ 793 794 #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8]) 795 #define SETMASK (1 << 21) 796 #define CLEARMASK (~(SETMASK)) 797 798 static 799 void mainSort ( UInt32* ptr, 800 UChar* block, 801 UInt16* quadrant, 802 UInt32* ftab, 803 Int32 nblock, 804 Int32 verb, 805 Int32* budget ) 806 { 807 Int32 i, j, k, ss, sb; 808 Int32 runningOrder[256]; 809 Bool bigDone[256]; 810 Int32 copyStart[256]; 811 Int32 copyEnd [256]; 812 UChar c1; 813 Int32 numQSorted; 814 UInt16 s; 815 if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" ); 816 817 /*-- set up the 2-byte frequency table --*/ 818 for (i = 65536; i >= 0; i--) ftab[i] = 0; 819 820 j = block[0] << 8; 821 i = nblock-1; 822 for (; i >= 3; i -= 4) { 823 quadrant[i] = 0; 824 j = (j >> 8) | ( ((UInt16)block[i]) << 8); 825 ftab[j]++; 826 quadrant[i-1] = 0; 827 j = (j >> 8) | ( ((UInt16)block[i-1]) << 8); 828 ftab[j]++; 829 quadrant[i-2] = 0; 830 j = (j >> 8) | ( ((UInt16)block[i-2]) << 8); 831 ftab[j]++; 832 quadrant[i-3] = 0; 833 j = (j >> 8) | ( ((UInt16)block[i-3]) << 8); 834 ftab[j]++; 835 } 836 for (; i >= 0; i--) { 837 quadrant[i] = 0; 838 j = (j >> 8) | ( ((UInt16)block[i]) << 8); 839 ftab[j]++; 840 } 841 842 /*-- (emphasises close relationship of block & quadrant) --*/ 843 for (i = 0; i < BZ_N_OVERSHOOT; i++) { 844 block [nblock+i] = block[i]; 845 quadrant[nblock+i] = 0; 846 } 847 848 if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); 849 850 /*-- Complete the initial radix sort --*/ 851 for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1]; 852 853 s = block[0] << 8; 854 i = nblock-1; 855 for (; i >= 3; i -= 4) { 856 s = (s >> 8) | (block[i] << 8); 857 j = ftab[s] -1; 858 ftab[s] = j; 859 ptr[j] = i; 860 s = (s >> 8) | (block[i-1] << 8); 861 j = ftab[s] -1; 862 ftab[s] = j; 863 ptr[j] = i-1; 864 s = (s >> 8) | (block[i-2] << 8); 865 j = ftab[s] -1; 866 ftab[s] = j; 867 ptr[j] = i-2; 868 s = (s >> 8) | (block[i-3] << 8); 869 j = ftab[s] -1; 870 ftab[s] = j; 871 ptr[j] = i-3; 872 } 873 for (; i >= 0; i--) { 874 s = (s >> 8) | (block[i] << 8); 875 j = ftab[s] -1; 876 ftab[s] = j; 877 ptr[j] = i; 878 } 879 880 /*-- 881 Now ftab contains the first loc of every small bucket. 882 Calculate the running order, from smallest to largest 883 big bucket. 884 --*/ 885 for (i = 0; i <= 255; i++) { 886 bigDone [i] = False; 887 runningOrder[i] = i; 888 } 889 890 { 891 Int32 vv; 892 Int32 h = 1; 893 do h = 3 * h + 1; while (h <= 256); 894 do { 895 h = h / 3; 896 for (i = h; i <= 255; i++) { 897 vv = runningOrder[i]; 898 j = i; 899 while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) { 900 runningOrder[j] = runningOrder[j-h]; 901 j = j - h; 902 if (j <= (h - 1)) goto zero; 903 } 904 zero: 905 runningOrder[j] = vv; 906 } 907 } while (h != 1); 908 } 909 910 /*-- 911 The main sorting loop. 912 --*/ 913 914 numQSorted = 0; 915 916 for (i = 0; i <= 255; i++) { 917 918 /*-- 919 Process big buckets, starting with the least full. 920 Basically this is a 3-step process in which we call 921 mainQSort3 to sort the small buckets [ss, j], but 922 also make a big effort to avoid the calls if we can. 923 --*/ 924 ss = runningOrder[i]; 925 926 /*-- 927 Step 1: 928 Complete the big bucket [ss] by quicksorting 929 any unsorted small buckets [ss, j], for j != ss. 930 Hopefully previous pointer-scanning phases have already 931 completed many of the small buckets [ss, j], so 932 we don't have to sort them at all. 933 --*/ 934 for (j = 0; j <= 255; j++) { 935 if (j != ss) { 936 sb = (ss << 8) + j; 937 if ( ! (ftab[sb] & SETMASK) ) { 938 Int32 lo = ftab[sb] & CLEARMASK; 939 Int32 hi = (ftab[sb+1] & CLEARMASK) - 1; 940 if (hi > lo) { 941 if (verb >= 4) 942 VPrintf4 ( " qsort [0x%x, 0x%x] " 943 "done %d this %d\n", 944 ss, j, numQSorted, hi - lo + 1 ); 945 mainQSort3 ( 946 ptr, block, quadrant, nblock, 947 lo, hi, BZ_N_RADIX, budget 948 ); 949 numQSorted += (hi - lo + 1); 950 if (*budget < 0) return; 951 } 952 } 953 ftab[sb] |= SETMASK; 954 } 955 } 956 957 AssertH ( !bigDone[ss], 1006 ); 958 959 /*-- 960 Step 2: 961 Now scan this big bucket [ss] so as to synthesise the 962 sorted order for small buckets [t, ss] for all t, 963 including, magically, the bucket [ss,ss] too. 964 This will avoid doing Real Work in subsequent Step 1's. 965 --*/ 966 { 967 for (j = 0; j <= 255; j++) { 968 copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK; 969 copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1; 970 } 971 for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) { 972 k = ptr[j]-1; if (k < 0) k += nblock; 973 c1 = block[k]; 974 if (!bigDone[c1]) 975 ptr[ copyStart[c1]++ ] = k; 976 } 977 for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) { 978 k = ptr[j]-1; if (k < 0) k += nblock; 979 c1 = block[k]; 980 if (!bigDone[c1]) 981 ptr[ copyEnd[c1]-- ] = k; 982 } 983 } 984 985 AssertH ( copyStart[ss]-1 == copyEnd[ss], 1007 ); 986 987 for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK; 988 989 /*-- 990 Step 3: 991 The [ss] big bucket is now done. Record this fact, 992 and update the quadrant descriptors. Remember to 993 update quadrants in the overshoot area too, if 994 necessary. The "if (i < 255)" test merely skips 995 this updating for the last bucket processed, since 996 updating for the last bucket is pointless. 997 998 The quadrant array provides a way to incrementally 999 cache sort orderings, as they appear, so as to 1000 make subsequent comparisons in fullGtU() complete 1001 faster. For repetitive blocks this makes a big 1002 difference (but not big enough to be able to avoid 1003 the fallback sorting mechanism, exponential radix sort). 1004 1005 The precise meaning is: at all times: 1006 1007 for 0 <= i < nblock and 0 <= j <= nblock 1008 1009 if block[i] != block[j], 1010 1011 then the relative values of quadrant[i] and 1012 quadrant[j] are meaningless. 1013 1014 else { 1015 if quadrant[i] < quadrant[j] 1016 then the string starting at i lexicographically 1017 precedes the string starting at j 1018 1019 else if quadrant[i] > quadrant[j] 1020 then the string starting at j lexicographically 1021 precedes the string starting at i 1022 1023 else 1024 the relative ordering of the strings starting 1025 at i and j has not yet been determined. 1026 } 1027 --*/ 1028 bigDone[ss] = True; 1029 1030 if (i < 255) { 1031 Int32 bbStart = ftab[ss << 8] & CLEARMASK; 1032 Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart; 1033 Int32 shifts = 0; 1034 1035 while ((bbSize >> shifts) > 65534) shifts++; 1036 1037 for (j = bbSize-1; j >= 0; j--) { 1038 Int32 a2update = ptr[bbStart + j]; 1039 UInt16 qVal = (UInt16)(j >> shifts); 1040 quadrant[a2update] = qVal; 1041 if (a2update < BZ_N_OVERSHOOT) 1042 quadrant[a2update + nblock] = qVal; 1043 } 1044 AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 ); 1045 } 1046 1047 } 1048 1049 if (verb >= 4) 1050 VPrintf3 ( " %d pointers, %d sorted, %d scanned\n", 1051 nblock, numQSorted, nblock - numQSorted ); 1052 } 1053 1054 #undef BIGFREQ 1055 #undef SETMASK 1056 #undef CLEARMASK 1057 1058 1059 /*---------------------------------------------*/ 1060 /* Pre: 1061 nblock > 0 1062 arr2 exists for [0 .. nblock-1 +N_OVERSHOOT] 1063 ((UChar*)arr2) [0 .. nblock-1] holds block 1064 arr1 exists for [0 .. nblock-1] 1065 1066 Post: 1067 ((UChar*)arr2) [0 .. nblock-1] holds block 1068 All other areas of block destroyed 1069 ftab [ 0 .. 65536 ] destroyed 1070 arr1 [0 .. nblock-1] holds sorted order 1071 */ 1072 void BZ2_blockSort ( EState* s ) 1073 { 1074 UInt32* ptr = s->ptr; 1075 UChar* block = s->block; 1076 UInt32* ftab = s->ftab; 1077 Int32 nblock = s->nblock; 1078 Int32 verb = s->verbosity; 1079 Int32 wfact = s->workFactor; 1080 UInt16* quadrant; 1081 Int32 budget; 1082 Int32 budgetInit; 1083 Int32 i; 1084 1085 if (nblock < 10000) { 1086 fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); 1087 } else { 1088 /* Calculate the location for quadrant, remembering to get 1089 the alignment right. Assumes that &(block[0]) is at least 1090 2-byte aligned -- this should be ok since block is really 1091 the first section of arr2. 1092 */ 1093 i = nblock+BZ_N_OVERSHOOT; 1094 if (i & 1) i++; 1095 quadrant = (UInt16*)(&(block[i])); 1096 1097 /* (wfact-1) / 3 puts the default-factor-30 1098 transition point at very roughly the same place as 1099 with v0.1 and v0.9.0. 1100 Not that it particularly matters any more, since the 1101 resulting compressed stream is now the same regardless 1102 of whether or not we use the main sort or fallback sort. 1103 */ 1104 if (wfact < 1 ) wfact = 1; 1105 if (wfact > 100) wfact = 100; 1106 budgetInit = nblock * ((wfact-1) / 3); 1107 budget = budgetInit; 1108 1109 mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget ); 1110 if (verb >= 3) 1111 VPrintf3 ( " %d work, %d block, ratio %5.2f\n", 1112 budgetInit - budget, 1113 nblock, 1114 (float)(budgetInit - budget) / 1115 (float)(nblock==0 ? 1 : nblock) ); 1116 if (budget < 0) { 1117 if (verb >= 2) 1118 VPrintf0 ( " too repetitive; using fallback" 1119 " sorting algorithm\n" ); 1120 fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); 1121 } 1122 } 1123 1124 s->origPtr = -1; 1125 for (i = 0; i < s->nblock; i++) 1126 if (ptr[i] == 0) 1127 { s->origPtr = i; break; }; 1128 1129 AssertH( s->origPtr != -1, 1003 ); 1130 } 1131 1132 1133 /*-------------------------------------------------------------*/ 1134 /*--- end blocksort.c ---*/ 1135 /*-------------------------------------------------------------*/