bwatch.c (6721B)
1 #include "stdinc.h" 2 #include "dat.h" 3 #include "fns.h" 4 #include "error.h" 5 6 /* 7 * Lock watcher. Check that locking of blocks is always down. 8 * 9 * This is REALLY slow, and it won't work when the blocks aren't 10 * arranged in a tree (e.g., after the first snapshot). But it's great 11 * for debugging. 12 */ 13 enum 14 { 15 MaxLock = 16, 16 HashSize = 1009, 17 }; 18 19 /* 20 * Thread-specific watch state. 21 */ 22 typedef struct WThread WThread; 23 struct WThread 24 { 25 Block *b[MaxLock]; /* blocks currently held */ 26 uint nb; 27 uint pid; 28 }; 29 30 typedef struct WMap WMap; 31 typedef struct WEntry WEntry; 32 33 struct WEntry 34 { 35 uchar c[VtScoreSize]; 36 uchar p[VtScoreSize]; 37 int off; 38 39 WEntry *cprev; 40 WEntry *cnext; 41 WEntry *pprev; 42 WEntry *pnext; 43 }; 44 45 struct WMap 46 { 47 QLock lk; 48 49 WEntry *hchild[HashSize]; 50 WEntry *hparent[HashSize]; 51 }; 52 53 static WMap map; 54 static void **wp; 55 static uint blockSize; 56 static WEntry *pool; 57 uint bwatchDisabled; 58 59 static uint 60 hash(uchar score[VtScoreSize]) 61 { 62 uint i, h; 63 64 h = 0; 65 for(i=0; i<VtScoreSize; i++) 66 h = h*37 + score[i]; 67 return h%HashSize; 68 } 69 70 #include <pool.h> 71 static void 72 freeWEntry(WEntry *e) 73 { 74 memset(e, 0, sizeof(WEntry)); 75 e->pnext = pool; 76 pool = e; 77 } 78 79 static WEntry* 80 allocWEntry(void) 81 { 82 int i; 83 WEntry *w; 84 85 w = pool; 86 if(w == nil){ 87 w = vtmallocz(1024*sizeof(WEntry)); 88 for(i=0; i<1024; i++) 89 freeWEntry(&w[i]); 90 w = pool; 91 } 92 pool = w->pnext; 93 memset(w, 0, sizeof(WEntry)); 94 return w; 95 } 96 97 /* 98 * remove all dependencies with score as a parent 99 */ 100 static void 101 _bwatchResetParent(uchar *score) 102 { 103 WEntry *w, *next; 104 uint h; 105 106 h = hash(score); 107 for(w=map.hparent[h]; w; w=next){ 108 next = w->pnext; 109 if(memcmp(w->p, score, VtScoreSize) == 0){ 110 if(w->pnext) 111 w->pnext->pprev = w->pprev; 112 if(w->pprev) 113 w->pprev->pnext = w->pnext; 114 else 115 map.hparent[h] = w->pnext; 116 if(w->cnext) 117 w->cnext->cprev = w->cprev; 118 if(w->cprev) 119 w->cprev->cnext = w->cnext; 120 else 121 map.hchild[hash(w->c)] = w->cnext; 122 freeWEntry(w); 123 } 124 } 125 } 126 /* 127 * and child 128 */ 129 static void 130 _bwatchResetChild(uchar *score) 131 { 132 WEntry *w, *next; 133 uint h; 134 135 h = hash(score); 136 for(w=map.hchild[h]; w; w=next){ 137 next = w->cnext; 138 if(memcmp(w->c, score, VtScoreSize) == 0){ 139 if(w->pnext) 140 w->pnext->pprev = w->pprev; 141 if(w->pprev) 142 w->pprev->pnext = w->pnext; 143 else 144 map.hparent[hash(w->p)] = w->pnext; 145 if(w->cnext) 146 w->cnext->cprev = w->cprev; 147 if(w->cprev) 148 w->cprev->cnext = w->cnext; 149 else 150 map.hchild[h] = w->cnext; 151 freeWEntry(w); 152 } 153 } 154 } 155 156 static uchar* 157 parent(uchar c[VtScoreSize], int *off) 158 { 159 WEntry *w; 160 uint h; 161 162 h = hash(c); 163 for(w=map.hchild[h]; w; w=w->cnext) 164 if(memcmp(w->c, c, VtScoreSize) == 0){ 165 *off = w->off; 166 return w->p; 167 } 168 return nil; 169 } 170 171 static void 172 addChild(uchar p[VtEntrySize], uchar c[VtEntrySize], int off) 173 { 174 uint h; 175 WEntry *w; 176 177 w = allocWEntry(); 178 memmove(w->p, p, VtScoreSize); 179 memmove(w->c, c, VtScoreSize); 180 w->off = off; 181 182 h = hash(p); 183 w->pnext = map.hparent[h]; 184 if(w->pnext) 185 w->pnext->pprev = w; 186 map.hparent[h] = w; 187 188 h = hash(c); 189 w->cnext = map.hchild[h]; 190 if(w->cnext) 191 w->cnext->cprev = w; 192 map.hchild[h] = w; 193 } 194 195 void 196 bwatchReset(uchar score[VtScoreSize]) 197 { 198 qlock(&map.lk); 199 _bwatchResetParent(score); 200 _bwatchResetChild(score); 201 qunlock(&map.lk); 202 } 203 204 void 205 bwatchInit(void) 206 { 207 wp = privalloc(); 208 *wp = nil; 209 } 210 211 void 212 bwatchSetBlockSize(uint bs) 213 { 214 blockSize = bs; 215 } 216 217 static WThread* 218 getWThread(void) 219 { 220 WThread *w; 221 222 w = *wp; 223 if(w == nil || w->pid != getpid()){ 224 w = vtmallocz(sizeof(WThread)); 225 *wp = w; 226 w->pid = getpid(); 227 } 228 return w; 229 } 230 231 /* 232 * Derive dependencies from the contents of b. 233 */ 234 void 235 bwatchDependency(Block *b) 236 { 237 int i, epb, ppb; 238 Entry e; 239 240 if(bwatchDisabled) 241 return; 242 243 qlock(&map.lk); 244 _bwatchResetParent(b->score); 245 246 switch(b->l.type){ 247 case BtData: 248 break; 249 250 case BtDir: 251 epb = blockSize / VtEntrySize; 252 for(i=0; i<epb; i++){ 253 entryUnpack(&e, b->data, i); 254 if(!(e.flags & VtEntryActive)) 255 continue; 256 addChild(b->score, e.score, i); 257 } 258 break; 259 260 default: 261 ppb = blockSize / VtScoreSize; 262 for(i=0; i<ppb; i++) 263 addChild(b->score, b->data+i*VtScoreSize, i); 264 break; 265 } 266 qunlock(&map.lk); 267 } 268 269 static int 270 depth(uchar *s) 271 { 272 int d, x; 273 274 d = -1; 275 while(s){ 276 d++; 277 s = parent(s, &x); 278 } 279 return d; 280 } 281 282 static int 283 lockConflicts(uchar xhave[VtScoreSize], uchar xwant[VtScoreSize]) 284 { 285 uchar *have, *want; 286 int havedepth, wantdepth, havepos, wantpos; 287 288 have = xhave; 289 want = xwant; 290 291 havedepth = depth(have); 292 wantdepth = depth(want); 293 294 /* 295 * walk one or the other up until they're both 296 * at the same level. 297 */ 298 havepos = -1; 299 wantpos = -1; 300 have = xhave; 301 want = xwant; 302 while(wantdepth > havedepth){ 303 wantdepth--; 304 want = parent(want, &wantpos); 305 } 306 while(havedepth > wantdepth){ 307 havedepth--; 308 have = parent(have, &havepos); 309 } 310 311 /* 312 * walk them up simultaneously until we reach 313 * a common ancestor. 314 */ 315 while(have && want && memcmp(have, want, VtScoreSize) != 0){ 316 have = parent(have, &havepos); 317 want = parent(want, &wantpos); 318 } 319 320 /* 321 * not part of same tree. happens mainly with 322 * newly allocated blocks. 323 */ 324 if(!have || !want) 325 return 0; 326 327 /* 328 * never walked want: means we want to lock 329 * an ancestor of have. no no. 330 */ 331 if(wantpos == -1) 332 return 1; 333 334 /* 335 * never walked have: means we want to lock a 336 * child of have. that's okay. 337 */ 338 if(havepos == -1) 339 return 0; 340 341 /* 342 * walked both: they're from different places in the tree. 343 * require that the left one be locked before the right one. 344 * (this is questionable, but it puts a total order on the block tree). 345 */ 346 return havepos < wantpos; 347 } 348 349 static void 350 stop(void) 351 { 352 int fd; 353 char buf[32]; 354 355 snprint(buf, sizeof buf, "#p/%d/ctl", getpid()); 356 fd = open(buf, OWRITE); 357 write(fd, "stop", 4); 358 close(fd); 359 } 360 361 /* 362 * Check whether the calling thread can validly lock b. 363 * That is, check that the calling thread doesn't hold 364 * locks for any of b's children. 365 */ 366 void 367 bwatchLock(Block *b) 368 { 369 int i; 370 WThread *w; 371 372 if(bwatchDisabled) 373 return; 374 375 if(b->part != PartData) 376 return; 377 378 qlock(&map.lk); 379 w = getWThread(); 380 for(i=0; i<w->nb; i++){ 381 if(lockConflicts(w->b[i]->score, b->score)){ 382 fprint(2, "%d: have block %V; shouldn't lock %V\n", 383 w->pid, w->b[i]->score, b->score); 384 stop(); 385 } 386 } 387 qunlock(&map.lk); 388 if(w->nb >= MaxLock){ 389 fprint(2, "%d: too many blocks held\n", w->pid); 390 stop(); 391 }else 392 w->b[w->nb++] = b; 393 } 394 395 /* 396 * Note that the calling thread is about to unlock b. 397 */ 398 void 399 bwatchUnlock(Block *b) 400 { 401 int i; 402 WThread *w; 403 404 if(bwatchDisabled) 405 return; 406 407 if(b->part != PartData) 408 return; 409 410 w = getWThread(); 411 for(i=0; i<w->nb; i++) 412 if(w->b[i] == b) 413 break; 414 if(i>=w->nb){ 415 fprint(2, "%d: unlock of unlocked block %V\n", w->pid, b->score); 416 stop(); 417 }else 418 w->b[i] = w->b[--w->nb]; 419 }