plan9port

fork of plan9port with libvec, libstr and libsdb
Log | Files | Refs | README | LICENSE

readjpg.c (33031B)


      1 #include <u.h>
      2 #include <libc.h>
      3 #include <bio.h>
      4 #include <draw.h>
      5 #include "imagefile.h"
      6 
      7 enum {
      8 	/* Constants, all preceded by byte 0xFF */
      9 	SOF	=0xC0,	/* Start of Frame */
     10 	SOF2=0xC2,	/* Start of Frame; progressive Huffman */
     11 	JPG	=0xC8,	/* Reserved for JPEG extensions */
     12 	DHT	=0xC4,	/* Define Huffman Tables */
     13 	DAC	=0xCC,	/* Arithmetic coding conditioning */
     14 	RST	=0xD0,	/* Restart interval termination */
     15 	RST7	=0xD7,	/* Restart interval termination (highest value) */
     16 	SOI	=0xD8,	/* Start of Image */
     17 	EOI	=0xD9,	/* End of Image */
     18 	SOS	=0xDA,	/* Start of Scan */
     19 	DQT	=0xDB,	/* Define quantization tables */
     20 	DNL	=0xDC,	/* Define number of lines */
     21 	DRI	=0xDD,	/* Define restart interval */
     22 	DHP	=0xDE,	/* Define hierarchical progression */
     23 	EXP	=0xDF,	/* Expand reference components */
     24 	APPn	=0xE0,	/* Reserved for application segments */
     25 	JPGn	=0xF0,	/* Reserved for JPEG extensions */
     26 	COM	=0xFE,	/* Comment */
     27 
     28 	CLAMPOFF	= 300,
     29 	NCLAMP		= CLAMPOFF+700
     30 };
     31 
     32 typedef struct Framecomp Framecomp;
     33 typedef struct Header Header;
     34 typedef struct Huffman Huffman;
     35 
     36 struct Framecomp	/* Frame component specifier from SOF marker */
     37 {
     38 	int	C;
     39 	int	H;
     40 	int	V;
     41 	int	Tq;
     42 };
     43 
     44 struct Huffman
     45 {
     46 	int	*size;	/* malloc'ed */
     47 	int	*code;	/* malloc'ed */
     48 	int	*val;		/* malloc'ed */
     49 	int	mincode[17];
     50 	int	maxcode[17];
     51 	int	valptr[17];
     52 	/* fast lookup */
     53 	int	value[256];
     54 	int	shift[256];
     55 };
     56 
     57 
     58 struct Header
     59 {
     60 	Biobuf	*fd;
     61 	char		err[256];
     62 	jmp_buf	errlab;
     63 	/* variables in i/o routines */
     64 	int		sr;	/* shift register, right aligned */
     65 	int		cnt;	/* # bits in right part of sr */
     66 	uchar	*buf;
     67 	int		nbuf;
     68 	int		peek;
     69 
     70 	int		Nf;
     71 
     72 	Framecomp	comp[3];
     73 	uchar	mode;
     74 	int		X;
     75 	int		Y;
     76 	int		qt[4][64];		/* quantization tables */
     77 	Huffman	dcht[4];
     78 	Huffman	acht[4];
     79 	int		**data[3];
     80 	int		ndata[3];
     81 
     82 	uchar	*sf;	/* start of frame; do better later */
     83 	uchar	*ss;	/* start of scan; do better later */
     84 	int		ri;	/* restart interval */
     85 
     86 	/* progressive scan */
     87 	Rawimage *image;
     88 	Rawimage **array;
     89 	int		*dccoeff[3];
     90 	int		**accoeff[3];	/* only need 8 bits plus quantization */
     91 	int		naccoeff[3];
     92 	int		nblock[3];
     93 	int		nacross;
     94 	int		ndown;
     95 	int		Hmax;
     96 	int		Vmax;
     97 };
     98 
     99 static	uchar	clamp[NCLAMP];
    100 
    101 static	Rawimage	*readslave(Header*, int);
    102 static	int			readsegment(Header*, int*);
    103 static	void			quanttables(Header*, uchar*, int);
    104 static	void			huffmantables(Header*, uchar*, int);
    105 static	void			soiheader(Header*);
    106 static	int			nextbyte(Header*, int);
    107 static	int			int2(uchar*, int);
    108 static	void			nibbles(int, int*, int*);
    109 static	int			receive(Header*, int);
    110 static	int			receiveEOB(Header*, int);
    111 static	int			receivebit(Header*);
    112 static	void			restart(Header*, int);
    113 static	int			decode(Header*, Huffman*);
    114 static	Rawimage*	baselinescan(Header*, int);
    115 static	void			progressivescan(Header*, int);
    116 static	Rawimage*	progressiveIDCT(Header*, int);
    117 static	void			idct(int*);
    118 static	void			colormap1(Header*, int, Rawimage*, int*, int, int);
    119 static	void			colormapall1(Header*, int, Rawimage*, int*, int*, int*, int, int);
    120 static	void			colormap(Header*, int, Rawimage*, int**, int**, int**, int, int, int, int, int*, int*);
    121 static	void			jpgerror(Header*, char*, ...);
    122 
    123 static	char		readerr[] = "ReadJPG: read error: %r";
    124 static	char		memerr[] = "ReadJPG: malloc failed: %r";
    125 
    126 static	int zig[64] = {
    127 	0, 1, 8, 16, 9, 2, 3, 10, 17, /* 0-7 */
    128 	24, 32, 25, 18, 11, 4, 5, /* 8-15 */
    129 	12, 19, 26, 33, 40, 48, 41, 34, /* 16-23 */
    130 	27, 20, 13, 6, 7, 14, 21, 28, /* 24-31 */
    131 	35, 42, 49, 56, 57, 50, 43, 36, /* 32-39 */
    132 	29, 22, 15, 23, 30, 37, 44, 51, /* 40-47 */
    133 	58, 59, 52, 45, 38, 31, 39, 46, /* 48-55 */
    134 	53, 60, 61, 54, 47, 55, 62, 63 /* 56-63 */
    135 };
    136 
    137 static
    138 void
    139 jpginit(void)
    140 {
    141 	int k;
    142 	static int inited;
    143 
    144 	if(inited)
    145 		return;
    146 	inited = 1;
    147 	for(k=0; k<CLAMPOFF; k++)
    148 		clamp[k] = 0;
    149 	for(; k<CLAMPOFF+256; k++)
    150 		clamp[k] = k-CLAMPOFF;
    151 	for(; k<NCLAMP; k++)
    152 		clamp[k] = 255;
    153 }
    154 
    155 static
    156 void*
    157 jpgmalloc(Header *h, int n, int clear)
    158 {
    159 	void *p;
    160 
    161 	p = malloc(n);
    162 	if(p == nil)
    163 		jpgerror(h, memerr);
    164 	if(clear)
    165 		memset(p, 0, n);
    166 	return p;
    167 }
    168 
    169 static
    170 void
    171 clear(void *pp)
    172 {
    173 	void **p = (void**)pp;
    174 
    175 	if(*p){
    176 		free(*p);
    177 		*p = nil;
    178 	}
    179 }
    180 
    181 static
    182 void
    183 jpgfreeall(Header *h, int freeimage)
    184 {
    185 	int i, j;
    186 
    187 	clear(&h->buf);
    188 	if(h->dccoeff[0])
    189 		for(i=0; i<3; i++)
    190 			clear(&h->dccoeff[i]);
    191 	if(h->accoeff[0])
    192 		for(i=0; i<3; i++){
    193 			if(h->accoeff[i])
    194 				for(j=0; j<h->naccoeff[i]; j++)
    195 					clear(&h->accoeff[i][j]);
    196 			clear(&h->accoeff[i]);
    197 		}
    198 	for(i=0; i<4; i++){
    199 		clear(&h->dcht[i].size);
    200 		clear(&h->acht[i].size);
    201 		clear(&h->dcht[i].code);
    202 		clear(&h->acht[i].code);
    203 		clear(&h->dcht[i].val);
    204 		clear(&h->acht[i].val);
    205 	}
    206 	if(h->data[0])
    207 		for(i=0; i<3; i++){
    208 			if(h->data[i])
    209 				for(j=0; j<h->ndata[i]; j++)
    210 					clear(&h->data[i][j]);
    211 			clear(&h->data[i]);
    212 		}
    213 	if(freeimage && h->image!=nil){
    214 		clear(&h->array);
    215 		clear(&h->image->cmap);
    216 		for(i=0; i<3; i++)
    217 			clear(&h->image->chans[i]);
    218 		clear(&h->image);
    219 	}
    220 }
    221 
    222 static
    223 void
    224 jpgerror(Header *h, char *fmt, ...)
    225 {
    226 	va_list arg;
    227 
    228 	va_start(arg, fmt);
    229 	vseprint(h->err, h->err+sizeof h->err, fmt, arg);
    230 	va_end(arg);
    231 
    232 	werrstr(h->err);
    233 	jpgfreeall(h, 1);
    234 	longjmp(h->errlab, 1);
    235 }
    236 
    237 Rawimage**
    238 Breadjpg(Biobuf *b, int colorspace)
    239 {
    240 	Rawimage *r, **array;
    241 	Header *h;
    242 	char buf[ERRMAX];
    243 
    244 	buf[0] = '\0';
    245 	if(colorspace!=CYCbCr && colorspace!=CRGB){
    246 		errstr(buf, sizeof buf);	/* throw it away */
    247 		werrstr("ReadJPG: unknown color space");
    248 		return nil;
    249 	}
    250 	jpginit();
    251 	h = malloc(sizeof(Header));
    252 	array = malloc(sizeof(Header));
    253 	if(h==nil || array==nil){
    254 		free(h);
    255 		free(array);
    256 		return nil;
    257 	}
    258 	h->array = array;
    259 	memset(h, 0, sizeof(Header));
    260 	h->fd = b;
    261 	errstr(buf, sizeof buf);	/* throw it away */
    262 	if(setjmp(h->errlab))
    263 		r = nil;
    264 	else
    265 		r = readslave(h, colorspace);
    266 	jpgfreeall(h, 0);
    267 	free(h);
    268 	array[0] = r;
    269 	array[1] = nil;
    270 	return array;
    271 }
    272 
    273 Rawimage**
    274 readjpg(int fd, int colorspace)
    275 {
    276 	Rawimage** a;
    277 	Biobuf b;
    278 
    279 	if(Binit(&b, fd, OREAD) < 0)
    280 		return nil;
    281 	a = Breadjpg(&b, colorspace);
    282 	Bterm(&b);
    283 	return a;
    284 }
    285 
    286 static
    287 Rawimage*
    288 readslave(Header *header, int colorspace)
    289 {
    290 	Rawimage *image;
    291 	int nseg, i, H, V, m, n;
    292 	uchar *b;
    293 
    294 	soiheader(header);
    295 	nseg = 0;
    296 	image = nil;
    297 
    298 	header->buf = jpgmalloc(header, 4096, 0);
    299 	header->nbuf = 4096;
    300 	while(header->err[0] == '\0'){
    301 		nseg++;
    302 		n = readsegment(header, &m);
    303 		b = header->buf;
    304 		switch(m){
    305 		case -1:
    306 			return image;
    307 
    308 		case APPn+0:
    309 			if(nseg==1 && strncmp((char*)b, "JFIF", 4)==0)  /* JFIF header; check version */
    310 				if(b[5]>1 || b[6]>2)
    311 					sprint(header->err, "ReadJPG: can't handle JFIF version %d.%2d", b[5], b[6]);
    312 			break;
    313 
    314 		case APPn+1: case APPn+2: case APPn+3: case APPn+4: case APPn+5:
    315 		case APPn+6: case APPn+7: case APPn+8: case APPn+9: case APPn+10:
    316 		case APPn+11: case APPn+12: case APPn+13: case APPn+14: case APPn+15:
    317 			break;
    318 
    319 		case DQT:
    320 			quanttables(header, b, n);
    321 			break;
    322 
    323 		case SOF:
    324 		case SOF2:
    325 			header->Y = int2(b, 1);
    326 			header->X = int2(b, 3);
    327 			header->Nf =b[5];
    328 			for(i=0; i<header->Nf; i++){
    329 				header->comp[i].C = b[6+3*i+0];
    330 				nibbles(b[6+3*i+1], &H, &V);
    331 				if(H<=0 || V<=0)
    332 					jpgerror(header, "non-positive sampling factor (Hsamp or Vsamp)");
    333 				header->comp[i].H = H;
    334 				header->comp[i].V = V;
    335 				header->comp[i].Tq = b[6+3*i+2];
    336 			}
    337 			header->mode = m;
    338 			header->sf = b;
    339 			break;
    340 
    341 		case  SOS:
    342 			header->ss = b;
    343 			switch(header->mode){
    344 			case SOF:
    345 				image = baselinescan(header, colorspace);
    346 				break;
    347 			case SOF2:
    348 				progressivescan(header, colorspace);
    349 				break;
    350 			default:
    351 				sprint(header->err, "unrecognized or unspecified encoding %d", header->mode);
    352 				break;
    353 			}
    354 			break;
    355 
    356 		case  DHT:
    357 			huffmantables(header, b, n);
    358 			break;
    359 
    360 		case  DRI:
    361 			header->ri = int2(b, 0);
    362 			break;
    363 
    364 		case  COM:
    365 			break;
    366 
    367 		case EOI:
    368 			if(header->mode == SOF2)
    369 				image = progressiveIDCT(header, colorspace);
    370 			return image;
    371 
    372 		default:
    373 			sprint(header->err, "ReadJPG: unknown marker %.2x", m);
    374 			break;
    375 		}
    376 	}
    377 	return image;
    378 }
    379 
    380 /* readsegment is called after reading scan, which can have */
    381 /* read ahead a byte.  so we must check peek here */
    382 static
    383 int
    384 readbyte(Header *h)
    385 {
    386 	uchar x;
    387 
    388 	if(h->peek >= 0){
    389 		x = h->peek;
    390 		h->peek = -1;
    391 	}else if(Bread(h->fd, &x, 1) != 1)
    392 		jpgerror(h, readerr);
    393 	return x;
    394 }
    395 
    396 static
    397 int
    398 marker(Header *h)
    399 {
    400 	int c;
    401 
    402 	while((c=readbyte(h)) == 0)
    403 		fprint(2, "ReadJPG: skipping zero byte at offset %lld\n", Boffset(h->fd));
    404 	if(c != 0xFF)
    405 		jpgerror(h, "ReadJPG: expecting marker; found 0x%x at offset %lld\n", c, Boffset(h->fd));
    406 	while(c == 0xFF)
    407 		c = readbyte(h);
    408 	return c;
    409 }
    410 
    411 static
    412 int
    413 int2(uchar *buf, int n)
    414 {
    415 	return (buf[n]<<8) + buf[n+1];
    416 }
    417 
    418 static
    419 void
    420 nibbles(int b, int *p0, int *p1)
    421 {
    422 	*p0 = (b>>4) & 0xF;
    423 	*p1 = b & 0xF;
    424 }
    425 
    426 static
    427 void
    428 soiheader(Header *h)
    429 {
    430 	h->peek = -1;
    431 	if(marker(h) != SOI)
    432 		jpgerror(h, "ReadJPG: unrecognized marker in header");
    433 	h->err[0] = '\0';
    434 	h->mode = 0;
    435 	h->ri = 0;
    436 }
    437 
    438 static
    439 int
    440 readsegment(Header *h, int *markerp)
    441 {
    442 	int m, n;
    443 	uchar tmp[2];
    444 
    445 	m = marker(h);
    446 	switch(m){
    447 	case EOI:
    448 		*markerp = m;
    449 		return 0;
    450 	case 0:
    451 		jpgerror(h, "ReadJPG: expecting marker; saw %.2x at offset %lld", m, Boffset(h->fd));
    452 	}
    453 	if(Bread(h->fd, tmp, 2) != 2)
    454     Readerr:
    455 		jpgerror(h, readerr);
    456 	n = int2(tmp, 0);
    457 	if(n < 2)
    458 		goto Readerr;
    459 	n -= 2;
    460 	if(n > h->nbuf){
    461 		free(h->buf);
    462 		h->buf = jpgmalloc(h, n+1, 0); /* +1 for sentinel */
    463 		h->nbuf = n;
    464 	}
    465 	if(Bread(h->fd, h->buf, n) != n)
    466 		goto Readerr;
    467 	*markerp = m;
    468 	return n;
    469 }
    470 
    471 static
    472 int
    473 huffmantable(Header *h, uchar *b)
    474 {
    475 	Huffman *t;
    476 	int Tc, th, n, nsize, i, j, k, v, cnt, code, si, sr, m;
    477 	int *maxcode;
    478 
    479 	nibbles(b[0], &Tc, &th);
    480 	if(Tc > 1)
    481 		jpgerror(h, "ReadJPG: unknown Huffman table class %d", Tc);
    482 	if(th>3 || (h->mode==SOF && th>1))
    483 		jpgerror(h, "ReadJPG: unknown Huffman table index %d", th);
    484 	if(Tc == 0)
    485 		t = &h->dcht[th];
    486 	else
    487 		t = &h->acht[th];
    488 
    489 	/* flow chart C-2 */
    490 	nsize = 0;
    491 	for(i=0; i<16; i++)
    492 		nsize += b[1+i];
    493 	t->size = jpgmalloc(h, (nsize+1)*sizeof(int), 1);
    494 	k = 0;
    495 	for(i=1; i<=16; i++){
    496 		n = b[i];
    497 		for(j=0; j<n; j++)
    498 			t->size[k++] = i;
    499 	}
    500 	t->size[k] = 0;
    501 
    502 	/* initialize HUFFVAL */
    503 	t->val = jpgmalloc(h, nsize*sizeof(int), 1);
    504 	for(i=0; i<nsize; i++)
    505 		t->val[i] = b[17+i];
    506 
    507 	/* flow chart C-3 */
    508 	t->code = jpgmalloc(h, (nsize+1)*sizeof(int), 1);
    509 	k = 0;
    510 	code = 0;
    511 	si = t->size[0];
    512 	for(;;){
    513 		do
    514 			t->code[k++] = code++;
    515 		while(t->size[k] == si);
    516 		if(t->size[k] == 0)
    517 			break;
    518 		do{
    519 			code <<= 1;
    520 			si++;
    521 		}while(t->size[k] != si);
    522 	}
    523 
    524 	/* flow chart F-25 */
    525 	i = 0;
    526 	j = 0;
    527 	for(;;){
    528 		for(;;){
    529 			i++;
    530 			if(i > 16)
    531 				goto outF25;
    532 			if(b[i] != 0)
    533 				break;
    534 			t->maxcode[i] = -1;
    535 		}
    536 		t->valptr[i] = j;
    537 		t->mincode[i] = t->code[j];
    538 		j += b[i]-1;
    539 		t->maxcode[i] = t->code[j];
    540 		j++;
    541 	}
    542 outF25:
    543 
    544 	/* create byte-indexed fast path tables */
    545 	maxcode = t->maxcode;
    546 	/* stupid startup algorithm: just run machine for each byte value */
    547 	for(v=0; v<256; ){
    548 		cnt = 7;
    549 		m = 1<<7;
    550 		code = 0;
    551 		sr = v;
    552 		i = 1;
    553 		for(;;i++){
    554 			if(sr & m)
    555 				code |= 1;
    556 			if(code <= maxcode[i])
    557 				break;
    558 			code <<= 1;
    559 			m >>= 1;
    560 			if(m == 0){
    561 				t->shift[v] = 0;
    562 				t->value[v] = -1;
    563 				goto continueBytes;
    564 			}
    565 			cnt--;
    566 		}
    567 		t->shift[v] = 8-cnt;
    568 		t->value[v] = t->val[t->valptr[i]+(code-t->mincode[i])];
    569 
    570     continueBytes:
    571 		v++;
    572 	}
    573 
    574 	return nsize;
    575 }
    576 
    577 static
    578 void
    579 huffmantables(Header *h, uchar *b, int n)
    580 {
    581 	int l, mt;
    582 
    583 	for(l=0; l<n; l+=17+mt)
    584 		mt = huffmantable(h, &b[l]);
    585 }
    586 
    587 static
    588 int
    589 quanttable(Header *h, uchar *b)
    590 {
    591 	int i, pq, tq, *q;
    592 
    593 	nibbles(b[0], &pq, &tq);
    594 	if(pq > 1)
    595 		jpgerror(h, "ReadJPG: unknown quantization table class %d", pq);
    596 	if(tq > 3)
    597 		jpgerror(h, "ReadJPG: unknown quantization table index %d", tq);
    598 	q = h->qt[tq];
    599 	for(i=0; i<64; i++){
    600 		if(pq == 0)
    601 			q[i] = b[1+i];
    602 		else
    603 			q[i] = int2(b, 1+2*i);
    604 	}
    605 	return 64*(1+pq);
    606 }
    607 
    608 static
    609 void
    610 quanttables(Header *h, uchar *b, int n)
    611 {
    612 	int l, m;
    613 
    614 	for(l=0; l<n; l+=1+m)
    615 		m = quanttable(h, &b[l]);
    616 }
    617 
    618 static
    619 Rawimage*
    620 baselinescan(Header *h, int colorspace)
    621 {
    622 	int Ns, z, k, m, Hmax, Vmax, comp;
    623 	int allHV1, nblock, ri, mcu, nacross, nmcu;
    624 	Huffman *dcht, *acht;
    625 	int block, t, diff, *qt;
    626 	uchar *ss;
    627 	Rawimage *image;
    628 	int Td[3], Ta[3], H[3], V[3], DC[3];
    629 	int ***data, *zz;
    630 
    631 	ss = h->ss;
    632 	Ns = ss[0];
    633 	if((Ns!=3 && Ns!=1) || Ns!=h->Nf)
    634 		jpgerror(h, "ReadJPG: can't handle scan not 3 components");
    635 
    636 	image = jpgmalloc(h, sizeof(Rawimage), 1);
    637 	h->image = image;
    638 	image->r = Rect(0, 0, h->X, h->Y);
    639 	image->cmap = nil;
    640 	image->cmaplen = 0;
    641 	image->chanlen = h->X*h->Y;
    642 	image->fields = 0;
    643 	image->gifflags = 0;
    644 	image->gifdelay = 0;
    645 	image->giftrindex = 0;
    646 	if(Ns == 3)
    647 		image->chandesc = colorspace;
    648 	else
    649 		image->chandesc = CY;
    650 	image->nchans = h->Nf;
    651 	for(k=0; k<h->Nf; k++)
    652 		image->chans[k] = jpgmalloc(h, h->X*h->Y, 0);
    653 
    654 	/* compute maximum H and V */
    655 	Hmax = 0;
    656 	Vmax = 0;
    657 	for(comp=0; comp<Ns; comp++){
    658 		if(h->comp[comp].H > Hmax)
    659 			Hmax = h->comp[comp].H;
    660 		if(h->comp[comp].V > Vmax)
    661 			Vmax = h->comp[comp].V;
    662 	}
    663 
    664 	/* initialize data structures */
    665 	allHV1 = 1;
    666 	data = h->data;
    667 	for(comp=0; comp<Ns; comp++){
    668 		/* JPEG requires scan components to be in same order as in frame, */
    669 		/* so if both have 3 we know scan is Y Cb Cr and there's no need to */
    670 		/* reorder */
    671 		nibbles(ss[2+2*comp], &Td[comp], &Ta[comp]);
    672 		H[comp] = h->comp[comp].H;
    673 		V[comp] = h->comp[comp].V;
    674 		nblock = H[comp]*V[comp];
    675 		if(nblock != 1)
    676 			allHV1 = 0;
    677 		data[comp] = jpgmalloc(h, nblock*sizeof(int*), 0);
    678 		h->ndata[comp] = nblock;
    679 		DC[comp] = 0;
    680 		for(m=0; m<nblock; m++)
    681 			data[comp][m] = jpgmalloc(h, 8*8*sizeof(int), 0);
    682 	}
    683 
    684 	ri = h->ri;
    685 
    686 	h->cnt = 0;
    687 	h->sr = 0;
    688 	h->peek = -1;
    689 	nacross = ((h->X+(8*Hmax-1))/(8*Hmax));
    690 	nmcu = ((h->Y+(8*Vmax-1))/(8*Vmax))*nacross;
    691 	for(mcu=0; mcu<nmcu; ){
    692 		for(comp=0; comp<Ns; comp++){
    693 			dcht = &h->dcht[Td[comp]];
    694 			acht = &h->acht[Ta[comp]];
    695 			qt = h->qt[h->comp[comp].Tq];
    696 
    697 			for(block=0; block<H[comp]*V[comp]; block++){
    698 				/* F-22 */
    699 				t = decode(h, dcht);
    700 				diff = receive(h, t);
    701 				DC[comp] += diff;
    702 
    703 				/* F-23 */
    704 				zz = data[comp][block];
    705 				memset(zz, 0, 8*8*sizeof(int));
    706 				zz[0] = qt[0]*DC[comp];
    707 				k = 1;
    708 
    709 				for(;;){
    710 					t = decode(h, acht);
    711 					if((t&0x0F) == 0){
    712 						if((t&0xF0) != 0xF0)
    713 							break;
    714 						k += 16;
    715 					}else{
    716 						k += t>>4;
    717 						z = receive(h, t&0xF);
    718 						zz[zig[k]] = z*qt[k];
    719 						if(k == 63)
    720 							break;
    721 						k++;
    722 					}
    723 				}
    724 
    725 				idct(zz);
    726 			}
    727 		}
    728 
    729 		/* rotate colors to RGB and assign to bytes */
    730 		if(Ns == 1) /* very easy */
    731 			colormap1(h, colorspace, image, data[0][0], mcu, nacross);
    732 		else if(allHV1) /* fairly easy */
    733 			colormapall1(h, colorspace, image, data[0][0], data[1][0], data[2][0], mcu, nacross);
    734 		else /* miserable general case */
    735 			colormap(h, colorspace, image, data[0], data[1], data[2], mcu, nacross, Hmax, Vmax, H, V);
    736 		/* process restart marker, if present */
    737 		mcu++;
    738 		if(ri>0 && mcu<nmcu && mcu%ri==0){
    739 			restart(h, mcu);
    740 			for(comp=0; comp<Ns; comp++)
    741 				DC[comp] = 0;
    742 		}
    743 	}
    744 	return image;
    745 }
    746 
    747 static
    748 void
    749 restart(Header *h, int mcu)
    750 {
    751 	int rest, rst, nskip;
    752 
    753 	rest = mcu/h->ri-1;
    754 	nskip = 0;
    755 	do{
    756 		do{
    757 			rst = nextbyte(h, 1);
    758 			nskip++;
    759 		}while(rst>=0 && rst!=0xFF);
    760 		if(rst == 0xFF){
    761 			rst = nextbyte(h, 1);
    762 			nskip++;
    763 		}
    764 	}while(rst>=0 && (rst&~7)!=RST);
    765 	if(nskip != 2)
    766 		sprint(h->err, "ReadJPG: skipped %d bytes at restart %d\n", nskip-2, rest);
    767 	if(rst < 0)
    768 		jpgerror(h, readerr);
    769 	if((rst&7) != (rest&7))
    770 		jpgerror(h, "ReadJPG: expected RST%d got %d", rest&7, rst&7);
    771 	h->cnt = 0;
    772 	h->sr = 0;
    773 }
    774 
    775 static
    776 Rawimage*
    777 progressiveIDCT(Header *h, int colorspace)
    778 {
    779 	int k, m, comp, block, Nf, bn;
    780 	int allHV1, nblock, mcu, nmcu;
    781 	int H[3], V[3], blockno[3];
    782 	int *dccoeff, **accoeff;
    783 	int ***data, *zz;
    784 
    785 	Nf = h->Nf;
    786 	allHV1 = 1;
    787 	data = h->data;
    788 
    789 	for(comp=0; comp<Nf; comp++){
    790 		H[comp] = h->comp[comp].H;
    791 		V[comp] = h->comp[comp].V;
    792 		nblock = h->nblock[comp];
    793 		if(nblock != 1)
    794 			allHV1 = 0;
    795 		h->ndata[comp] = nblock;
    796 		data[comp] = jpgmalloc(h, nblock*sizeof(int*), 0);
    797 		for(m=0; m<nblock; m++)
    798 			data[comp][m] = jpgmalloc(h, 8*8*sizeof(int), 0);
    799 	}
    800 
    801 	memset(blockno, 0, sizeof blockno);
    802 	nmcu = h->nacross*h->ndown;
    803 	for(mcu=0; mcu<nmcu; mcu++){
    804 		for(comp=0; comp<Nf; comp++){
    805 			dccoeff = h->dccoeff[comp];
    806 			accoeff = h->accoeff[comp];
    807 			bn = blockno[comp];
    808 			for(block=0; block<h->nblock[comp]; block++){
    809 				zz = data[comp][block];
    810 				memset(zz, 0, 8*8*sizeof(int));
    811 				zz[0] = dccoeff[bn];
    812 
    813 				for(k=1; k<64; k++)
    814 					zz[zig[k]] = accoeff[bn][k];
    815 
    816 				idct(zz);
    817 				bn++;
    818 			}
    819 			blockno[comp] = bn;
    820 		}
    821 
    822 		/* rotate colors to RGB and assign to bytes */
    823 		if(Nf == 1) /* very easy */
    824 			colormap1(h, colorspace, h->image, data[0][0], mcu, h->nacross);
    825 		else if(allHV1) /* fairly easy */
    826 			colormapall1(h, colorspace, h->image, data[0][0], data[1][0], data[2][0], mcu, h->nacross);
    827 		else /* miserable general case */
    828 			colormap(h, colorspace, h->image, data[0], data[1], data[2], mcu, h->nacross, h->Hmax, h->Vmax, H, V);
    829 	}
    830 
    831 	return h->image;
    832 }
    833 
    834 static
    835 void
    836 progressiveinit(Header *h, int colorspace)
    837 {
    838 	int Nf, Ns, j, k, nmcu, comp;
    839 	uchar *ss;
    840 	Rawimage *image;
    841 
    842 	ss = h->ss;
    843 	Ns = ss[0];
    844 	Nf = h->Nf;
    845 	if((Ns!=3 && Ns!=1) || Ns!=Nf)
    846 		jpgerror(h, "ReadJPG: image must have 1 or 3 components");
    847 
    848 	image = jpgmalloc(h, sizeof(Rawimage), 1);
    849 	h->image = image;
    850 	image->r = Rect(0, 0, h->X, h->Y);
    851 	image->cmap = nil;
    852 	image->cmaplen = 0;
    853 	image->chanlen = h->X*h->Y;
    854 	image->fields = 0;
    855 	image->gifflags = 0;
    856 	image->gifdelay = 0;
    857 	image->giftrindex = 0;
    858 	if(Nf == 3)
    859 		image->chandesc = colorspace;
    860 	else
    861 		image->chandesc = CY;
    862 	image->nchans = h->Nf;
    863 	for(k=0; k<Nf; k++){
    864 		image->chans[k] = jpgmalloc(h, h->X*h->Y, 0);
    865 		h->nblock[k] = h->comp[k].H*h->comp[k].V;
    866 	}
    867 
    868 	/* compute maximum H and V */
    869 	h->Hmax = 0;
    870 	h->Vmax = 0;
    871 	for(comp=0; comp<Nf; comp++){
    872 		if(h->comp[comp].H > h->Hmax)
    873 			h->Hmax = h->comp[comp].H;
    874 		if(h->comp[comp].V > h->Vmax)
    875 			h->Vmax = h->comp[comp].V;
    876 	}
    877 	h->nacross = ((h->X+(8*h->Hmax-1))/(8*h->Hmax));
    878 	h->ndown = ((h->Y+(8*h->Vmax-1))/(8*h->Vmax));
    879 	nmcu = h->nacross*h->ndown;
    880 
    881 	for(k=0; k<Nf; k++){
    882 		h->dccoeff[k] = jpgmalloc(h, h->nblock[k]*nmcu * sizeof(int), 1);
    883 		h->accoeff[k] = jpgmalloc(h, h->nblock[k]*nmcu * sizeof(int*), 1);
    884 		h->naccoeff[k] = h->nblock[k]*nmcu;
    885 		for(j=0; j<h->nblock[k]*nmcu; j++)
    886 			h->accoeff[k][j] = jpgmalloc(h, 64*sizeof(int), 1);
    887 	}
    888 
    889 }
    890 
    891 static
    892 void
    893 progressivedc(Header *h, int comp, int Ah, int Al)
    894 {
    895 	int Ns, z, ri, mcu,  nmcu;
    896 	int block, t, diff, qt, *dc, bn;
    897 	Huffman *dcht;
    898 	uchar *ss;
    899 	int Td[3], DC[3], blockno[3];
    900 
    901 	ss= h->ss;
    902 	Ns = ss[0];
    903 	if(Ns!=h->Nf)
    904 		jpgerror(h, "ReadJPG: can't handle progressive with Nf!=Ns in DC scan");
    905 
    906 	/* initialize data structures */
    907 	h->cnt = 0;
    908 	h->sr = 0;
    909 	h->peek = -1;
    910 	for(comp=0; comp<Ns; comp++){
    911 		/*
    912 		 * JPEG requires scan components to be in same order as in frame,
    913 		 * so if both have 3 we know scan is Y Cb Cr and there's no need to
    914 		 * reorder
    915 		 */
    916 		nibbles(ss[2+2*comp], &Td[comp], &z);	/* z is ignored */
    917 		DC[comp] = 0;
    918 	}
    919 
    920 	ri = h->ri;
    921 
    922 	nmcu = h->nacross*h->ndown;
    923 	memset(blockno, 0, sizeof blockno);
    924 	for(mcu=0; mcu<nmcu; ){
    925 		for(comp=0; comp<Ns; comp++){
    926 			dcht = &h->dcht[Td[comp]];
    927 			qt = h->qt[h->comp[comp].Tq][0];
    928 			dc = h->dccoeff[comp];
    929 			bn = blockno[comp];
    930 
    931 			for(block=0; block<h->nblock[comp]; block++){
    932 				if(Ah == 0){
    933 					t = decode(h, dcht);
    934 					diff = receive(h, t);
    935 					DC[comp] += diff;
    936 					dc[bn] = qt*DC[comp]<<Al;
    937 				}else
    938 					dc[bn] |= qt*receivebit(h)<<Al;
    939 				bn++;
    940 			}
    941 			blockno[comp] = bn;
    942 		}
    943 
    944 		/* process restart marker, if present */
    945 		mcu++;
    946 		if(ri>0 && mcu<nmcu && mcu%ri==0){
    947 			restart(h, mcu);
    948 			for(comp=0; comp<Ns; comp++)
    949 				DC[comp] = 0;
    950 		}
    951 	}
    952 }
    953 
    954 static
    955 void
    956 progressiveac(Header *h, int comp, int Al)
    957 {
    958 	int Ns, Ss, Se, z, k, eobrun, x, y, nver, tmcu, blockno, *acc, rs;
    959 	int ri, mcu, nacross, ndown, nmcu, nhor;
    960 	Huffman *acht;
    961 	int *qt, rrrr, ssss, q;
    962 	uchar *ss;
    963 	int Ta, H, V;
    964 
    965 	ss = h->ss;
    966 	Ns = ss[0];
    967 	if(Ns != 1)
    968 		jpgerror(h, "ReadJPG: illegal Ns>1 in progressive AC scan");
    969 	Ss = ss[1+2];
    970 	Se = ss[2+2];
    971 	H = h->comp[comp].H;
    972 	V = h->comp[comp].V;
    973 
    974 	nacross = h->nacross*H;
    975 	ndown = h->ndown*V;
    976 	q = 8*h->Hmax/H;
    977 	nhor = (h->X+q-1)/q;
    978 	q = 8*h->Vmax/V;
    979 	nver = (h->Y+q-1)/q;
    980 
    981 	/* initialize data structures */
    982 	h->cnt = 0;
    983 	h->sr = 0;
    984 	h->peek = -1;
    985 	nibbles(ss[1+1], &z, &Ta);	/* z is thrown away */
    986 
    987 	ri = h->ri;
    988 
    989 	eobrun = 0;
    990 	acht = &h->acht[Ta];
    991 	qt = h->qt[h->comp[comp].Tq];
    992 	nmcu = nacross*ndown;
    993 	mcu = 0;
    994 	for(y=0; y<nver; y++){
    995 		for(x=0; x<nhor; x++){
    996 			/* Figure G-3  */
    997 			if(eobrun > 0){
    998 				--eobrun;
    999 				continue;
   1000 			}
   1001 
   1002 			/* arrange blockno to be in same sequence as original scan calculation. */
   1003 			tmcu = x/H + (nacross/H)*(y/V);
   1004 			blockno = tmcu*H*V + H*(y%V) + x%H;
   1005 			acc = h->accoeff[comp][blockno];
   1006 			k = Ss;
   1007 			for(;;){
   1008 				rs = decode(h, acht);
   1009 				/* XXX remove rrrr ssss as in baselinescan */
   1010 				nibbles(rs, &rrrr, &ssss);
   1011 				if(ssss == 0){
   1012 					if(rrrr < 15){
   1013 						eobrun = 0;
   1014 						if(rrrr > 0)
   1015 							eobrun = receiveEOB(h, rrrr)-1;
   1016 						break;
   1017 					}
   1018 					k += 16;
   1019 				}else{
   1020 					k += rrrr;
   1021 					z = receive(h, ssss);
   1022 					acc[k] = z*qt[k]<<Al;
   1023 					if(k == Se)
   1024 						break;
   1025 					k++;
   1026 				}
   1027 			}
   1028 		}
   1029 
   1030 		/* process restart marker, if present */
   1031 		mcu++;
   1032 		if(ri>0 && mcu<nmcu && mcu%ri==0){
   1033 			restart(h, mcu);
   1034 			eobrun = 0;
   1035 		}
   1036 	}
   1037 }
   1038 
   1039 static
   1040 void
   1041 increment(Header *h, int acc[], int k, int Pt)
   1042 {
   1043 	if(acc[k] == 0)
   1044 		return;
   1045 	if(receivebit(h) != 0)
   1046 		if(acc[k] < 0)
   1047 			acc[k] -= Pt;
   1048 		else
   1049 			acc[k] += Pt;
   1050 }
   1051 
   1052 static
   1053 void
   1054 progressiveacinc(Header *h, int comp, int Al)
   1055 {
   1056 	int Ns, i, z, k, Ss, Se, Ta, **ac, H, V;
   1057 	int ri, mcu, nacross, ndown, nhor, nver, eobrun, nzeros, pending, x, y, tmcu, blockno, q, nmcu;
   1058 	Huffman *acht;
   1059 	int *qt, rrrr, ssss, *acc, rs;
   1060 	uchar *ss;
   1061 
   1062 	ss = h->ss;
   1063 	Ns = ss[0];
   1064 	if(Ns != 1)
   1065 		jpgerror(h, "ReadJPG: illegal Ns>1 in progressive AC scan");
   1066 	Ss = ss[1+2];
   1067 	Se = ss[2+2];
   1068 	H = h->comp[comp].H;
   1069 	V = h->comp[comp].V;
   1070 
   1071 	nacross = h->nacross*H;
   1072 	ndown = h->ndown*V;
   1073 	q = 8*h->Hmax/H;
   1074 	nhor = (h->X+q-1)/q;
   1075 	q = 8*h->Vmax/V;
   1076 	nver = (h->Y+q-1)/q;
   1077 
   1078 	/* initialize data structures */
   1079 	h->cnt = 0;
   1080 	h->sr = 0;
   1081 	h->peek = -1;
   1082 	nibbles(ss[1+1], &z, &Ta);	/* z is thrown away */
   1083 	ri = h->ri;
   1084 
   1085 	eobrun = 0;
   1086 	ac = h->accoeff[comp];
   1087 	acht = &h->acht[Ta];
   1088 	qt = h->qt[h->comp[comp].Tq];
   1089 	nmcu = nacross*ndown;
   1090 	mcu = 0;
   1091 	pending = 0;
   1092 	nzeros = -1;
   1093 	for(y=0; y<nver; y++){
   1094 		for(x=0; x<nhor; x++){
   1095 			/* Figure G-7 */
   1096 
   1097 			/*  arrange blockno to be in same sequence as original scan calculation. */
   1098 			tmcu = x/H + (nacross/H)*(y/V);
   1099 			blockno = tmcu*H*V + H*(y%V) + x%H;
   1100 			acc = ac[blockno];
   1101 			if(eobrun > 0){
   1102 				if(nzeros > 0)
   1103 					jpgerror(h, "ReadJPG: zeros pending at block start");
   1104 				for(k=Ss; k<=Se; k++)
   1105 					increment(h, acc, k, qt[k]<<Al);
   1106 				--eobrun;
   1107 				continue;
   1108 			}
   1109 
   1110 			for(k=Ss; k<=Se; ){
   1111 				if(nzeros >= 0){
   1112 					if(acc[k] != 0)
   1113 						increment(h, acc, k, qt[k]<<Al);
   1114 					else if(nzeros-- == 0)
   1115 						acc[k] = pending;
   1116 					k++;
   1117 					continue;
   1118 				}
   1119 				rs = decode(h, acht);
   1120 				nibbles(rs, &rrrr, &ssss);
   1121 				if(ssss == 0){
   1122 					if(rrrr < 15){
   1123 						eobrun = 0;
   1124 						if(rrrr > 0)
   1125 							eobrun = receiveEOB(h, rrrr)-1;
   1126 						while(k <= Se){
   1127 							increment(h, acc, k, qt[k]<<Al);
   1128 							k++;
   1129 						}
   1130 						break;
   1131 					}
   1132 					for(i=0; i<16; k++){
   1133 						increment(h, acc, k, qt[k]<<Al);
   1134 						if(acc[k] == 0)
   1135 							i++;
   1136 					}
   1137 					continue;
   1138 				}else if(ssss != 1)
   1139 					jpgerror(h, "ReadJPG: ssss!=1 in progressive increment");
   1140 				nzeros = rrrr;
   1141 				pending = receivebit(h);
   1142 				if(pending == 0)
   1143 					pending = -1;
   1144 				pending *= qt[k]<<Al;
   1145 			}
   1146 		}
   1147 
   1148 		/* process restart marker, if present */
   1149 		mcu++;
   1150 		if(ri>0 && mcu<nmcu && mcu%ri==0){
   1151 			restart(h, mcu);
   1152 			eobrun = 0;
   1153 			nzeros = -1;
   1154 		}
   1155 	}
   1156 }
   1157 
   1158 static
   1159 void
   1160 progressivescan(Header *h, int colorspace)
   1161 {
   1162 	uchar *ss;
   1163 	int Ns, Ss, Ah, Al, c, comp, i;
   1164 
   1165 	if(h->dccoeff[0] == nil)
   1166 		progressiveinit(h, colorspace);
   1167 
   1168 	ss = h->ss;
   1169 	Ns = ss[0];
   1170 	Ss = ss[1+2*Ns];
   1171 	nibbles(ss[3+2*Ns], &Ah, &Al);
   1172 	c = ss[1];
   1173 	comp = -1;
   1174 	for(i=0; i<h->Nf; i++)
   1175 		if(h->comp[i].C == c)
   1176 			comp = i;
   1177 	if(comp == -1)
   1178 		jpgerror(h, "ReadJPG: bad component index in scan header");
   1179 
   1180 	if(Ss == 0){
   1181 		progressivedc(h, comp, Ah, Al);
   1182 		return;
   1183 	}
   1184 	if(Ah == 0){
   1185 		progressiveac(h, comp, Al);
   1186 		return;
   1187 	}
   1188 	progressiveacinc(h, comp, Al);
   1189 }
   1190 
   1191 enum {
   1192 	c1 = 2871,	/* 1.402 * 2048 */
   1193 	c2 = 705,		/* 0.34414 * 2048 */
   1194 	c3 = 1463,	/* 0.71414 * 2048 */
   1195 	c4 = 3629	/* 1.772 * 2048 */
   1196 };
   1197 
   1198 static
   1199 void
   1200 colormap1(Header *h, int colorspace, Rawimage *image, int data[8*8], int mcu, int nacross)
   1201 {
   1202 	uchar *pic;
   1203 	int x, y, dx, dy, minx, miny;
   1204 	int r, k, pici;
   1205 
   1206 	USED(colorspace);
   1207 	pic = image->chans[0];
   1208 	minx = 8*(mcu%nacross);
   1209 	dx = 8;
   1210 	if(minx+dx > h->X)
   1211 		dx = h->X-minx;
   1212 	miny = 8*(mcu/nacross);
   1213 	dy = 8;
   1214 	if(miny+dy > h->Y)
   1215 		dy = h->Y-miny;
   1216 	pici = miny*h->X+minx;
   1217 	k = 0;
   1218 	for(y=0; y<dy; y++){
   1219 		for(x=0; x<dx; x++){
   1220 			r = clamp[(data[k+x]+128)+CLAMPOFF];
   1221 			pic[pici+x] = r;
   1222 		}
   1223 		pici += h->X;
   1224 		k += 8;
   1225 	}
   1226 }
   1227 
   1228 static
   1229 void
   1230 colormapall1(Header *h, int colorspace, Rawimage *image, int data0[8*8], int data1[8*8], int data2[8*8], int mcu, int nacross)
   1231 {
   1232 	uchar *rpic, *gpic, *bpic, *rp, *gp, *bp;
   1233 	int *p0, *p1, *p2;
   1234 	int x, y, dx, dy, minx, miny;
   1235 	int r, g, b, k, pici;
   1236 	int Y, Cr, Cb;
   1237 
   1238 	rpic = image->chans[0];
   1239 	gpic = image->chans[1];
   1240 	bpic = image->chans[2];
   1241 	minx = 8*(mcu%nacross);
   1242 	dx = 8;
   1243 	if(minx+dx > h->X)
   1244 		dx = h->X-minx;
   1245 	miny = 8*(mcu/nacross);
   1246 	dy = 8;
   1247 	if(miny+dy > h->Y)
   1248 		dy = h->Y-miny;
   1249 	pici = miny*h->X+minx;
   1250 	k = 0;
   1251 	for(y=0; y<dy; y++){
   1252 		p0 = data0+k;
   1253 		p1 = data1+k;
   1254 		p2 = data2+k;
   1255 		rp = rpic+pici;
   1256 		gp = gpic+pici;
   1257 		bp = bpic+pici;
   1258 		if(colorspace == CYCbCr)
   1259 			for(x=0; x<dx; x++){
   1260 				*rp++ = clamp[*p0++ + 128 + CLAMPOFF];
   1261 				*gp++ = clamp[*p1++ + 128 + CLAMPOFF];
   1262 				*bp++ = clamp[*p2++ + 128 + CLAMPOFF];
   1263 			}
   1264 		else
   1265 			for(x=0; x<dx; x++){
   1266 				Y = (*p0++ + 128) << 11;
   1267 				Cb = *p1++;
   1268 				Cr = *p2++;
   1269 				r = Y+c1*Cr;
   1270 				g = Y-c2*Cb-c3*Cr;
   1271 				b = Y+c4*Cb;
   1272 				*rp++ = clamp[(r>>11)+CLAMPOFF];
   1273 				*gp++ = clamp[(g>>11)+CLAMPOFF];
   1274 				*bp++ = clamp[(b>>11)+CLAMPOFF];
   1275 			}
   1276 		pici += h->X;
   1277 		k += 8;
   1278 	}
   1279 }
   1280 
   1281 static
   1282 void
   1283 colormap(Header *h, int colorspace, Rawimage *image, int *data0[8*8], int *data1[8*8], int *data2[8*8], int mcu, int nacross, int Hmax, int Vmax,  int *H, int *V)
   1284 {
   1285 	uchar *rpic, *gpic, *bpic;
   1286 	int x, y, dx, dy, minx, miny;
   1287 	int r, g, b, pici, H0, H1, H2;
   1288 	int t, b0, b1, b2, y0, y1, y2, x0, x1, x2;
   1289 	int Y, Cr, Cb;
   1290 
   1291 	rpic = image->chans[0];
   1292 	gpic = image->chans[1];
   1293 	bpic = image->chans[2];
   1294 	minx = 8*Hmax*(mcu%nacross);
   1295 	dx = 8*Hmax;
   1296 	if(minx+dx > h->X)
   1297 		dx = h->X-minx;
   1298 	miny = 8*Vmax*(mcu/nacross);
   1299 	dy = 8*Vmax;
   1300 	if(miny+dy > h->Y)
   1301 		dy = h->Y-miny;
   1302 	pici = miny*h->X+minx;
   1303 	H0 = H[0];
   1304 	H1 = H[1];
   1305 	H2 = H[2];
   1306 	for(y=0; y<dy; y++){
   1307 		t = y*V[0];
   1308 		b0 = H0*(t/(8*Vmax));
   1309 		y0 = 8*((t/Vmax)&7);
   1310 		t = y*V[1];
   1311 		b1 = H1*(t/(8*Vmax));
   1312 		y1 = 8*((t/Vmax)&7);
   1313 		t = y*V[2];
   1314 		b2 = H2*(t/(8*Vmax));
   1315 		y2 = 8*((t/Vmax)&7);
   1316 		x0 = 0;
   1317 		x1 = 0;
   1318 		x2 = 0;
   1319 		for(x=0; x<dx; x++){
   1320 			if(colorspace == CYCbCr){
   1321 				rpic[pici+x] = clamp[data0[b0][y0+x0++*H0/Hmax] + 128 + CLAMPOFF];
   1322 				gpic[pici+x] = clamp[data1[b1][y1+x1++*H1/Hmax] + 128 + CLAMPOFF];
   1323 				bpic[pici+x] = clamp[data2[b2][y2+x2++*H2/Hmax] + 128 + CLAMPOFF];
   1324 			}else{
   1325 				Y = (data0[b0][y0+x0++*H0/Hmax]+128)<<11;
   1326 				Cb = data1[b1][y1+x1++*H1/Hmax];
   1327 				Cr = data2[b2][y2+x2++*H2/Hmax];
   1328 				r = Y+c1*Cr;
   1329 				g = Y-c2*Cb-c3*Cr;
   1330 				b = Y+c4*Cb;
   1331 				rpic[pici+x] = clamp[(r>>11)+CLAMPOFF];
   1332 				gpic[pici+x] = clamp[(g>>11)+CLAMPOFF];
   1333 				bpic[pici+x] = clamp[(b>>11)+CLAMPOFF];
   1334 			}
   1335 			if(x0*H0/Hmax >= 8){
   1336 				x0 = 0;
   1337 				b0++;
   1338 			}
   1339 			if(x1*H1/Hmax >= 8){
   1340 				x1 = 0;
   1341 				b1++;
   1342 			}
   1343 			if(x2*H2/Hmax >= 8){
   1344 				x2 = 0;
   1345 				b2++;
   1346 			}
   1347 		}
   1348 		pici += h->X;
   1349 	}
   1350 }
   1351 
   1352 /*
   1353  * decode next 8-bit value from entropy-coded input.  chart F-26
   1354  */
   1355 static
   1356 int
   1357 decode(Header *h, Huffman *t)
   1358 {
   1359 	int code, v, cnt, m, sr, i;
   1360 	int *maxcode;
   1361 	static int badcode;
   1362 
   1363 	maxcode = t->maxcode;
   1364 	if(h->cnt < 8)
   1365 		nextbyte(h, 0);
   1366 	/* fast lookup */
   1367 	code = (h->sr>>(h->cnt-8))&0xFF;
   1368 	v = t->value[code];
   1369 	if(v >= 0){
   1370 		h->cnt -= t->shift[code];
   1371 		return v;
   1372 	}
   1373 
   1374 	h->cnt -= 8;
   1375 	if(h->cnt == 0)
   1376 		nextbyte(h, 0);
   1377 	h->cnt--;
   1378 	cnt = h->cnt;
   1379 	m = 1<<cnt;
   1380 	sr = h->sr;
   1381 	code <<= 1;
   1382 	i = 9;
   1383 	for(;;i++){
   1384 		if(sr & m)
   1385 			code |= 1;
   1386 		if(code <= maxcode[i])
   1387 			break;
   1388 		code <<= 1;
   1389 		m >>= 1;
   1390 		if(m == 0){
   1391 			sr = nextbyte(h, 0);
   1392 			m = 0x80;
   1393 			cnt = 8;
   1394 		}
   1395 		cnt--;
   1396 	}
   1397 	if(i >= 17){
   1398 		if(badcode == 0)
   1399 			fprint(2, "badly encoded %dx%d JPEG file; ignoring bad value\n", h->X, h->Y);
   1400 		badcode = 1;
   1401 		i = 0;
   1402 	}
   1403 	h->cnt = cnt;
   1404 	return t->val[t->valptr[i]+(code-t->mincode[i])];
   1405 }
   1406 
   1407 /*
   1408  * load next byte of input
   1409  */
   1410 static
   1411 int
   1412 nextbyte(Header *h, int marker)
   1413 {
   1414 	int b, b2;
   1415 
   1416 	if(h->peek >= 0){
   1417 		b = h->peek;
   1418 		h->peek = -1;
   1419 	}else{
   1420 		b = Bgetc(h->fd);
   1421 		if(b == Beof)
   1422 			jpgerror(h, "truncated file");
   1423 		b &= 0xFF;
   1424 	}
   1425 
   1426 	if(b == 0xFF){
   1427 		if(marker)
   1428 			return b;
   1429 		b2 = Bgetc(h->fd);
   1430 		if(b2 != 0){
   1431 			if(b2 == Beof)
   1432 				jpgerror(h, "truncated file");
   1433 			b2 &= 0xFF;
   1434 			if(b2 == DNL)
   1435 				jpgerror(h, "ReadJPG: DNL marker unimplemented");
   1436 			/* decoder is reading into marker; satisfy it and restore state */
   1437 			Bungetc(h->fd);
   1438 			h->peek = b;
   1439 		}
   1440 	}
   1441 	h->cnt += 8;
   1442 	h->sr = (h->sr<<8) | b;
   1443 	return b;
   1444 }
   1445 
   1446 /*
   1447  * return next s bits of input, MSB first, and level shift it
   1448  */
   1449 static
   1450 int
   1451 receive(Header *h, int s)
   1452 {
   1453 	int v, m;
   1454 
   1455 	while(h->cnt < s)
   1456 		nextbyte(h, 0);
   1457 	h->cnt -= s;
   1458 	v = h->sr >> h->cnt;
   1459 	m = (1<<s);
   1460 	v &= m-1;
   1461 	/* level shift */
   1462 	if(v < (m>>1))
   1463 		v += ~(m-1)+1;
   1464 	return v;
   1465 }
   1466 
   1467 /*
   1468  * return next s bits of input, decode as EOB
   1469  */
   1470 static
   1471 int
   1472 receiveEOB(Header *h, int s)
   1473 {
   1474 	int v, m;
   1475 
   1476 	while(h->cnt < s)
   1477 		nextbyte(h, 0);
   1478 	h->cnt -= s;
   1479 	v = h->sr >> h->cnt;
   1480 	m = (1<<s);
   1481 	v &= m-1;
   1482 	/* level shift */
   1483 	v += m;
   1484 	return v;
   1485 }
   1486 
   1487 /*
   1488  * return next bit of input
   1489  */
   1490 static
   1491 int
   1492 receivebit(Header *h)
   1493 {
   1494 	if(h->cnt < 1)
   1495 		nextbyte(h, 0);
   1496 	h->cnt--;
   1497 	return (h->sr >> h->cnt) & 1;
   1498 }
   1499 
   1500 /*
   1501  *  Scaled integer implementation.
   1502  *  inverse two dimensional DCT, Chen-Wang algorithm
   1503  * (IEEE ASSP-32, pp. 803-816, Aug. 1984)
   1504  * 32-bit integer arithmetic (8 bit coefficients)
   1505  * 11 mults, 29 adds per DCT
   1506  *
   1507  * coefficients extended to 12 bit for IEEE1180-1990 compliance
   1508  */
   1509 
   1510 enum {
   1511 	W1		= 2841,	/* 2048*sqrt(2)*cos(1*pi/16)*/
   1512 	W2		= 2676,	/* 2048*sqrt(2)*cos(2*pi/16)*/
   1513 	W3		= 2408,	/* 2048*sqrt(2)*cos(3*pi/16)*/
   1514 	W5		= 1609,	/* 2048*sqrt(2)*cos(5*pi/16)*/
   1515 	W6		= 1108,	/* 2048*sqrt(2)*cos(6*pi/16)*/
   1516 	W7		= 565,	/* 2048*sqrt(2)*cos(7*pi/16)*/
   1517 
   1518 	W1pW7	= 3406,	/* W1+W7*/
   1519 	W1mW7	= 2276,	/* W1-W7*/
   1520 	W3pW5	= 4017,	/* W3+W5*/
   1521 	W3mW5	= 799,	/* W3-W5*/
   1522 	W2pW6	= 3784,	/* W2+W6*/
   1523 	W2mW6	= 1567,	/* W2-W6*/
   1524 
   1525 	R2		= 181	/* 256/sqrt(2)*/
   1526 };
   1527 
   1528 static
   1529 void
   1530 idct(int b[8*8])
   1531 {
   1532 	int x, y, eighty, v;
   1533 	int x0, x1, x2, x3, x4, x5, x6, x7, x8;
   1534 	int *p;
   1535 
   1536 	/* transform horizontally*/
   1537 	for(y=0; y<8; y++){
   1538 		eighty = y<<3;
   1539 		/* if all non-DC components are zero, just propagate the DC term*/
   1540 		p = b+eighty;
   1541 		if(p[1]==0)
   1542 		if(p[2]==0 && p[3]==0)
   1543 		if(p[4]==0 && p[5]==0)
   1544 		if(p[6]==0 && p[7]==0){
   1545 			v = p[0]<<3;
   1546 			p[0] = v;
   1547 			p[1] = v;
   1548 			p[2] = v;
   1549 			p[3] = v;
   1550 			p[4] = v;
   1551 			p[5] = v;
   1552 			p[6] = v;
   1553 			p[7] = v;
   1554 			continue;
   1555 		}
   1556 		/* prescale*/
   1557 		x0 = (p[0]<<11)+128;
   1558 		x1 = p[4]<<11;
   1559 		x2 = p[6];
   1560 		x3 = p[2];
   1561 		x4 = p[1];
   1562 		x5 = p[7];
   1563 		x6 = p[5];
   1564 		x7 = p[3];
   1565 		/* first stage*/
   1566 		x8 = W7*(x4+x5);
   1567 		x4 = x8 + W1mW7*x4;
   1568 		x5 = x8 - W1pW7*x5;
   1569 		x8 = W3*(x6+x7);
   1570 		x6 = x8 - W3mW5*x6;
   1571 		x7 = x8 - W3pW5*x7;
   1572 		/* second stage*/
   1573 		x8 = x0 + x1;
   1574 		x0 -= x1;
   1575 		x1 = W6*(x3+x2);
   1576 		x2 = x1 - W2pW6*x2;
   1577 		x3 = x1 + W2mW6*x3;
   1578 		x1 = x4 + x6;
   1579 		x4 -= x6;
   1580 		x6 = x5 + x7;
   1581 		x5 -= x7;
   1582 		/* third stage*/
   1583 		x7 = x8 + x3;
   1584 		x8 -= x3;
   1585 		x3 = x0 + x2;
   1586 		x0 -= x2;
   1587 		x2 = (R2*(x4+x5)+128)>>8;
   1588 		x4 = (R2*(x4-x5)+128)>>8;
   1589 		/* fourth stage*/
   1590 		p[0] = (x7+x1)>>8;
   1591 		p[1] = (x3+x2)>>8;
   1592 		p[2] = (x0+x4)>>8;
   1593 		p[3] = (x8+x6)>>8;
   1594 		p[4] = (x8-x6)>>8;
   1595 		p[5] = (x0-x4)>>8;
   1596 		p[6] = (x3-x2)>>8;
   1597 		p[7] = (x7-x1)>>8;
   1598 	}
   1599 	/* transform vertically*/
   1600 	for(x=0; x<8; x++){
   1601 		/* if all non-DC components are zero, just propagate the DC term*/
   1602 		p = b+x;
   1603 		if(p[8*1]==0)
   1604 		if(p[8*2]==0 && p[8*3]==0)
   1605 		if(p[8*4]==0 && p[8*5]==0)
   1606 		if(p[8*6]==0 && p[8*7]==0){
   1607 			v = (p[8*0]+32)>>6;
   1608 			p[8*0] = v;
   1609 			p[8*1] = v;
   1610 			p[8*2] = v;
   1611 			p[8*3] = v;
   1612 			p[8*4] = v;
   1613 			p[8*5] = v;
   1614 			p[8*6] = v;
   1615 			p[8*7] = v;
   1616 			continue;
   1617 		}
   1618 		/* prescale*/
   1619 		x0 = (p[8*0]<<8)+8192;
   1620 		x1 = p[8*4]<<8;
   1621 		x2 = p[8*6];
   1622 		x3 = p[8*2];
   1623 		x4 = p[8*1];
   1624 		x5 = p[8*7];
   1625 		x6 = p[8*5];
   1626 		x7 = p[8*3];
   1627 		/* first stage*/
   1628 		x8 = W7*(x4+x5) + 4;
   1629 		x4 = (x8+W1mW7*x4)>>3;
   1630 		x5 = (x8-W1pW7*x5)>>3;
   1631 		x8 = W3*(x6+x7) + 4;
   1632 		x6 = (x8-W3mW5*x6)>>3;
   1633 		x7 = (x8-W3pW5*x7)>>3;
   1634 		/* second stage*/
   1635 		x8 = x0 + x1;
   1636 		x0 -= x1;
   1637 		x1 = W6*(x3+x2) + 4;
   1638 		x2 = (x1-W2pW6*x2)>>3;
   1639 		x3 = (x1+W2mW6*x3)>>3;
   1640 		x1 = x4 + x6;
   1641 		x4 -= x6;
   1642 		x6 = x5 + x7;
   1643 		x5 -= x7;
   1644 		/* third stage*/
   1645 		x7 = x8 + x3;
   1646 		x8 -= x3;
   1647 		x3 = x0 + x2;
   1648 		x0 -= x2;
   1649 		x2 = (R2*(x4+x5)+128)>>8;
   1650 		x4 = (R2*(x4-x5)+128)>>8;
   1651 		/* fourth stage*/
   1652 		p[8*0] = (x7+x1)>>14;
   1653 		p[8*1] = (x3+x2)>>14;
   1654 		p[8*2] = (x0+x4)>>14;
   1655 		p[8*3] = (x8+x6)>>14;
   1656 		p[8*4] = (x8-x6)>>14;
   1657 		p[8*5] = (x0-x4)>>14;
   1658 		p[8*6] = (x3-x2)>>14;
   1659 		p[8*7] = (x7-x1)>>14;
   1660 	}
   1661 }