plan9port

fork of plan9port with libvec, libstr and libsdb
Log | Files | Refs | README | LICENSE

tstack.c (4709B)


      1 /*% cc -gpc %
      2  * These transformation routines maintain stacks of transformations
      3  * and their inverses.
      4  * t=pushmat(t)		push matrix stack
      5  * t=popmat(t)		pop matrix stack
      6  * rot(t, a, axis)	multiply stack top by rotation
      7  * qrot(t, q)		multiply stack top by rotation, q is unit quaternion
      8  * scale(t, x, y, z)	multiply stack top by scale
      9  * move(t, x, y, z)	multiply stack top by translation
     10  * xform(t, m)		multiply stack top by m
     11  * ixform(t, m, inv)	multiply stack top by m.  inv is the inverse of m.
     12  * look(t, e, l, u)	multiply stack top by viewing transformation
     13  * persp(t, fov, n, f)	multiply stack top by perspective transformation
     14  * viewport(t, r, aspect)
     15  *			multiply stack top by window->viewport transformation.
     16  */
     17 #include <u.h>
     18 #include <libc.h>
     19 #include <draw.h>
     20 #include <geometry.h>
     21 Space *pushmat(Space *t){
     22 	Space *v;
     23 	v=malloc(sizeof(Space));
     24 	if(t==0){
     25 		ident(v->t);
     26 		ident(v->tinv);
     27 	}
     28 	else
     29 		*v=*t;
     30 	v->next=t;
     31 	return v;
     32 }
     33 Space *popmat(Space *t){
     34 	Space *v;
     35 	if(t==0) return 0;
     36 	v=t->next;
     37 	free(t);
     38 	return v;
     39 }
     40 void rot(Space *t, double theta, int axis){
     41 	double s=sin(radians(theta)), c=cos(radians(theta));
     42 	Matrix m, inv;
     43 	int i=(axis+1)%3, j=(axis+2)%3;
     44 	ident(m);
     45 	m[i][i] = c;
     46 	m[i][j] = -s;
     47 	m[j][i] = s;
     48 	m[j][j] = c;
     49 	ident(inv);
     50 	inv[i][i] = c;
     51 	inv[i][j] = s;
     52 	inv[j][i] = -s;
     53 	inv[j][j] = c;
     54 	ixform(t, m, inv);
     55 }
     56 void qrot(Space *t, Quaternion q){
     57 	Matrix m, inv;
     58 	int i, j;
     59 	qtom(m, q);
     60 	for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i];
     61 	ixform(t, m, inv);
     62 }
     63 void scale(Space *t, double x, double y, double z){
     64 	Matrix m, inv;
     65 	ident(m);
     66 	m[0][0]=x;
     67 	m[1][1]=y;
     68 	m[2][2]=z;
     69 	ident(inv);
     70 	inv[0][0]=1/x;
     71 	inv[1][1]=1/y;
     72 	inv[2][2]=1/z;
     73 	ixform(t, m, inv);
     74 }
     75 void move(Space *t, double x, double y, double z){
     76 	Matrix m, inv;
     77 	ident(m);
     78 	m[0][3]=x;
     79 	m[1][3]=y;
     80 	m[2][3]=z;
     81 	ident(inv);
     82 	inv[0][3]=-x;
     83 	inv[1][3]=-y;
     84 	inv[2][3]=-z;
     85 	ixform(t, m, inv);
     86 }
     87 void xform(Space *t, Matrix m){
     88 	Matrix inv;
     89 	if(invertmat(m, inv)==0) return;
     90 	ixform(t, m, inv);
     91 }
     92 void ixform(Space *t, Matrix m, Matrix inv){
     93 	matmul(t->t, m);
     94 	matmulr(t->tinv, inv);
     95 }
     96 /*
     97  * multiply the top of the matrix stack by a view-pointing transformation
     98  * with the eyepoint at e, looking at point l, with u at the top of the screen.
     99  * The coordinate system is deemed to be right-handed.
    100  * The generated transformation transforms this view into a view from
    101  * the origin, looking in the positive y direction, with the z axis pointing up,
    102  * and x to the right.
    103  */
    104 void look(Space *t, Point3 e, Point3 l, Point3 u){
    105 	Matrix m, inv;
    106 	Point3 r;
    107 	l=unit3(sub3(l, e));
    108 	u=unit3(vrem3(sub3(u, e), l));
    109 	r=cross3(l, u);
    110 	/* make the matrix to transform from (rlu) space to (xyz) space */
    111 	ident(m);
    112 	m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z;
    113 	m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z;
    114 	m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z;
    115 	ident(inv);
    116 	inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x;
    117 	inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y;
    118 	inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z;
    119 	ixform(t, m, inv);
    120 	move(t, -e.x, -e.y, -e.z);
    121 }
    122 /*
    123  * generate a transformation that maps the frustum with apex at the origin,
    124  * apex angle=fov and clipping planes y=n and y=f into the double-unit cube.
    125  * plane y=n maps to y'=-1, y=f maps to y'=1
    126  */
    127 int persp(Space *t, double fov, double n, double f){
    128 	Matrix m;
    129 	double z;
    130 	if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */
    131 		return -1;
    132 	z=1/tan(radians(fov)/2);
    133 	m[0][0]=z; m[0][1]=0;           m[0][2]=0; m[0][3]=0;
    134 	m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]);
    135 	m[2][0]=0; m[2][1]=0;           m[2][2]=z; m[2][3]=0;
    136 	m[3][0]=0; m[3][1]=1;           m[3][2]=0; m[3][3]=0;
    137 	xform(t, m);
    138 	return 0;
    139 }
    140 /*
    141  * Map the unit-cube window into the given screen viewport.
    142  * r has min at the top left, max just outside the lower right.  Aspect is the
    143  * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!)
    144  * The whole window is transformed to fit centered inside the viewport with equal
    145  * slop on either top and bottom or left and right, depending on the viewport's
    146  * aspect ratio.
    147  * The window is viewed down the y axis, with x to the left and z up.  The viewport
    148  * has x increasing to the right and y increasing down.  The window's y coordinates
    149  * are mapped, unchanged, into the viewport's z coordinates.
    150  */
    151 void viewport(Space *t, Rectangle r, double aspect){
    152 	Matrix m;
    153 	double xc, yc, wid, hgt, scale;
    154 	xc=.5*(r.min.x+r.max.x);
    155 	yc=.5*(r.min.y+r.max.y);
    156 	wid=(r.max.x-r.min.x)*aspect;
    157 	hgt=r.max.y-r.min.y;
    158 	scale=.5*(wid<hgt?wid:hgt);
    159 	ident(m);
    160 	m[0][0]=scale;
    161 	m[0][3]=xc;
    162 	m[1][1]=0;
    163 	m[1][2]=-scale;
    164 	m[1][3]=yc;
    165 	m[2][1]=1;
    166 	m[2][2]=0;
    167 	/* should get inverse by hand */
    168 	xform(t, m);
    169 }